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Abstract—This paper introduces a product quantization-based approach for approximate nearest neighbor search. The idea is to

decompose the space into a Cartesian product of low-dimensional subspaces and to quantize each subspace separately. A vector is

represented by a short code composed of its subspace quantization indices. The euclidean distance between two vectors can be

efficiently estimated from their codes. An asymmetric version increases precision, as it computes the approximate distance between a

vector and a code. Experimental results show that our approach searches for nearest neighbors efficiently, in particular in combination

with an inverted file system. Results for SIFT and GIST image descriptors show excellent search accuracy, outperforming three state-

of-the-art approaches. The scalability of our approach is validated on a data set of two billion vectors.

Index Terms—High-dimensional indexing, image indexing, very large databases, approximate search.
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1 INTRODUCTION

COMPUTING euclidean distances between high dimen-
sional vectors is a fundamental requirement in many

applications. It is used, in particular, for nearest neighbor
(NN) search. Nearest neighbor search is inherently expen-
sive due to the curse of dimensionality [1], [2]. Focusing on the
D-dimensional euclidean space IRD, the problem is to find
the element NNðxÞ in a finite set Y � IRD of n vectors,
minimizing the distance to the query vector x 2 IRD:

NNðxÞ ¼ arg min
y2Y

dðx; yÞ: ð1Þ

Several multidimensional indexing methods, such as the
popular KD-tree [3] or other branch and bound techniques,
have been proposed to reduce the search time. However, for
high dimensions it turns out [4] that such approaches are
not more efficient than the brute-force exhaustive distance
calculation, whose complexity is OðnDÞ.

There is a large body of literature [5], [6], [7] on algorithms
that overcomes this issue by performing approximate nearest
neighbor (ANN) search. The key idea shared by these
algorithms is to find the NN with high probability “only”
instead of probability 1. Most of the effort has been devoted to
the euclidean distance, though recent generalizations have
been proposed for other metrics [8]. In this paper, we consider
the euclidean distance, which is relevant for many applica-
tions. In this case, one of the most popular ANN algorithms is
the euclidean Locality-Sensitive Hashing (E2LSH) [5], [9],
which provides theoretical guarantees on the search quality

with limited assumptions. It has been successfully used
for local descriptors [10] and 3D object indexing [11], [9].
However, for real data, LSH is outperformed by heuristic
methods, which exploit the distribution of the vectors.
These methods include randomized KD-trees [12] and
hierarchical k-means [13], both of which are implemented
in the FLANN selection algorithm [7].

ANN algorithms are typically compared based on the
trade-off between search quality and efficiency. However,
this trade-off does not take into account the memory
requirements of the indexing structure. In the case of
E2LSH, the memory usage may even be higher than that of
the original vectors. Moreover, both E2LSH and FLANN
need to perform a final reranking step based on exact L2
distances, which requires the indexed vectors to be stored in
main memory if access speed is important. This constraint
seriously limits the number of vectors that can be handled by
these algorithms. Only recently did researchers come up
with methods limiting memory usage. This is a key criterion
for problems involving large amounts of data [14], i.e., in
large-scale scene recognition [15], where millions to billions
of images have to be indexed. In [15], Torralba et al. represent
an image by a single global GIST descriptor [16] which is
mapped to a short binary code. When no supervision is used,
this mapping is learned such that the neighborhood in the
embedded space defined by the Hamming distance reflects
the neighborhood in the euclidean space of the original
features. The search of the euclidean nearest neighbors is
then approximated by the search of the nearest neighbors in
terms of Hamming distances between codes. In [17], spectral
hashing (SH) is shown to outperform the binary codes
generated by the restricted Boltzmann machine [15], boost-
ing, and LSH. Similarly, the Hamming embedding method
of Jegou et al. [18], [19] uses a binary signature to refine
quantized SIFT or GIST descriptors in a bag-of-features
image search framework.

In this paper, we construct short codes using quantization.
The goal is to estimate distances using vector-to-centroid
distances, i.e., the query vector is not quantized, codes are
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List of variables:

x = query vector
C = codebook
k = number vectors in a subvector
k* =  k’s in binary format
m = partitions
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assigned to the database vectors only. This reduces the
quantization noise and subsequently improves the search
quality. To obtain precise distances, the quantization error
must be limited. Therefore, the total number k of centroids
should be sufficiently large, e.g., k ¼ 264 for 64-bit codes. This
raises several issues on how to learn the codebook and assign
a vector. First, the number of samples required to learn the
quantizer is huge, i.e., several times k. Second, the complex-
ity of the algorithm itself is prohibitive. Finally, the amount
of computer memory available on Earth is not sufficient to
store the floating-point values representing the centroids.

The hierarchical k-means (HKM) improves the efficiency
of the learning stage and of the corresponding assignment
procedure [13]. However, the aforementioned limitations
still apply, in particular with respect to memory usage and
size of the learning set. Another possibility is scalar
quantizers, but they offer poor quantization error properties
in terms of the trade-off between memory and reconstruc-
tion error. Lattice quantizers offer better quantization
properties for uniform vector distributions, but this condi-
tion is rarely satisfied by real-world vectors. In practice,
these quantizers perform significantly worse than k-means
in indexing tasks [20]. In this paper, we focus on product
quantizers. To our knowledge, such a semistructured
quantizer has never been considered in any nearest
neighbor search method.

The advantages of our method are twofold. First, the
number of possible distances is significantly higher than for
competing Hamming embedding methods [18], [15], [17], as
the Hamming space used in these techniques allows for a
few distinct distances only. Second, as a byproduct of the
method, we get an estimation of the expected squared
distance, which is required for "-radius search or for using
Lowe’s distance ratio criterion [21]. The motivation of using
the Hamming space in [18], [15], [17] is to compute
distances efficiently. Note, however, that one of the fastest
ways to compute Hamming distances consists of using table
lookups. Our method uses a similar number of table
lookups, resulting in comparable efficiency.

An exhaustive comparison of the query vector with all
codes is prohibitive for very large data sets. We, therefore,
introduce a modified inverted file structure to rapidly access
the most relevant vectors. A coarse quantizer is used to
implement this inverted file structure, where vectors
corresponding to a cluster (index) are stored in the associated
list. The vectors in the list are represented by short codes,
computed by our product quantizer, which is used here to
encode the residual vector with respect to the cluster center.

The interest of our method is validated on two kinds of
vectors, namely, local SIFT [21] and global GIST [16]
descriptors. A comparison with the state of the art shows
that our approach outperforms existing techniques, in
particular spectral hashing [17], Hamming embedding
[18], and FLANN [7].

Our paper is organized as follows: Section 2 introduces the
notations for quantization as well as the product quantizer
used by our method. Section 3 presents our approach for NN
search and Section 4 introduces the structure used to avoid
exhaustive search. An evaluation of the parameters of our
approach and a comparison with the state of the art are given
in Section 5.

2 BACKGROUND: QUANTIZATION, PRODUCT

QUANTIZER

A large body of literature is available on vector quantiza-
tion, see [22] for a survey. In this section, we restrict our
presentation to the notations and concepts used in the rest
of the paper.

2.1 Vector Quantization

Quantization is a destructive process which has been
extensively studied in information theory [22]. Its purpose
is to reduce the cardinality of the representation space, in
particular when the input data is real-valued. Formally, a
quantizer is a function q mapping a D-dimensional vector
x 2 IRD to a vector qðxÞ 2 C ¼ fci; i 2 Ig, where the index
set I is from now on assumed to be finite: I ¼ 0 . . . k� 1.
The reproduction values ci are called centroids. The set of
reproduction values C is the codebook of size k.

The set Vi of vectors mapped to a given index i is
referred to as a (Voronoi) cell, and defined as

Vi ¼
4 fx 2 IRD : qðxÞ ¼ cig: ð2Þ

The k cells of a quantizer form a partition of IRD. By
definition, all of the vectors lying in the same cell Vi are
reconstructed by the same centroid ci. The quality of a
quantizer is usually measured by the mean squared error
between the input vector x and its reproduction value qðxÞ:

MSEðqÞ ¼ IEX

�
dðqðxÞ; xÞ2

�
¼
Z
pðxÞ d

�
qðxÞ; x

�2
dx; ð3Þ

where dðx; yÞ ¼ kx� yk is the euclidean distance between x
and y and where pðxÞ is the probability distribution function
corresponding the random variable X. For an arbitrary
probability distribution function, (3) is numerically com-
puted using Monte-Carlo sampling, as the average of
kqðxÞ � xk2 on a large set of samples.

In order for the quantizer to be optimal, it has to satisfy
two properties known as the Lloyd optimality conditions.
First, a vector x must be quantized to its nearest codebook
centroid, in terms of the euclidean distance:

qðxÞ ¼ arg min
ci2C

dðx; ciÞ: ð4Þ

As a result, the cells are delimited by hyperplanes. The
second Lloyd condition is that the reconstruction value must
be the expectation of the vectors lying in the Voronoi cell:

ci ¼ IEX

�
xji
�
¼
Z
Vi
pðxÞ x dx: ð5Þ

The Lloyd quantizer, which corresponds to the k-means
clustering algorithm, finds a near-optimal codebook by
iteratively assigning the vectors of a training set to centroids
and reestimating these centroids from the assigned points. In
the following, we assume that the two Lloyd conditions hold,
as we learn the quantizer using k-means. Note, however, that
k-means only finds a local optimum in terms of quantization
error.

Another quantity that will be used in the following is the
mean squared distortion �ðq; ciÞ obtained when reconstruct-
ing a vector of a cell Vi by the corresponding centroid ci.
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Denoting by pi ¼ IP
�
qðxÞ ¼ ci

�
the probability that a vector

is assigned to the centroid ci, it is computed as

�ðq; ciÞ ¼
1

pi

Z
Vi
dðx; qðxÞÞ2 pðxÞ dx: ð6Þ

Note that the MSE can be obtained from these quantities as

MSEðqÞ ¼
X
i2I

pi �ðq; ciÞ: ð7Þ

The memory cost of storing the index value, without any
further processing (entropy coding), is dlog2 ke bits. There-
fore, it is convenient to use a power of two for k, as the code
produced by the quantizer is stored in a binary memory.

2.2 Product Quantizers

Let us consider a 128-dimensional vector, for example, the
SIFT descriptor [21]. A quantizer producing 64-bits codes,
i.e., “only” 0.5 bit per component, contains k ¼ 264 centroids.
Therefore, it is impossible to use Lloyd’s algorithm or even
HKM, as the number of samples required and the complexity
of learning the quantizer are several times k. It is even
impossible to store theD� k floating-point values represent-
ing the k centroids.

Product quantization is an efficient solution to address
these issues. It is a common technique in source coding,
which allows us to choose the number of components to be
quantized jointly (for instance, groups of 24 components
can be quantized using the powerful Leech lattice). The
input vector x is split into m distinct subvectors uj,
1 � j � m, of dimension D� ¼ D=m, where D is a multiple
of m. The subvectors are quantized separately using m
distinct quantizers. A given vector x is therefore mapped as
follows:

x1; . . . ; xD�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
u1ðxÞ

; . . . ; xD�D�þ1; . . . ; xD|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
umðxÞ

! q1

�
u1ðxÞÞ; . . . ; qmðumðxÞ

�
;

ð8Þ

where qj is a low-complexity quantizer associated with the
jth subvector. With the subquantizer qj we associate the
index set I j, the codebook Cj, and the corresponding
reproduction values cj;i.

A reproduction value of the product quantizer is
identified by an element of the product index set
I ¼ I 1 � � � � � Im. The codebook is therefore defined as
the Cartesian product

C ¼ C1 � � � � � Cm ð9Þ

and a centroid of this set is the concatenation of centroids of
the m subquantizers. From now on, we assume that all

subquantizers have the same finite number k� of reproduc-
tion values. In that case, the total number of centroids is
given by

k ¼ ðk�Þm: ð10Þ

Note that in the extremal case where m ¼ D, the
components of a vector x are all quantized separately.
Then, the product quantizer turns out to be a scalar
quantizer, where the quantization function associated with
each component may be different.

The strength of a product quantizer is to produce a
large set of centroids from several small sets of centroids:
those associated with the subquantizers. When learning
the subquantizers using Lloyd’s algorithm, a limited
number of vectors is used, but the codebook is, to some
extent, still adapted to the data distribution to represent.
The complexity of learning the quantizer is m times the
complexity of performing k-means clustering with
k� centroids of dimension D�.

Storing the codebook C explicitly is not efficient. Instead,
we store the m� k� centroids of all the subquantizers, i.e.,
m D� k� ¼ k� D floating-points values. Quantizing an ele-
ment requires k�D floating-point operations. Table 1
summarizes the resource requirements associated with
k-means, HKM, and product k-means. The product
quantizer is clearly the only one that can be indexed in
memory for large values of k.

In order to provide good quantization properties when
choosing a constant value of k�, each subvector should
have, on average, a comparable energy. One way to ensure
this property is to multiply the vector by a random
orthogonal matrix prior to quantization. However, for most
vector types this is not required and not recommended, as
consecutive components are often correlated by construc-
tion and are better quantized together with the same
subquantizer. As the subspaces are orthogonal, the squared
distortion associated with the product quantizer is

MSEðqÞ ¼
X
j

MSEðqjÞ; ð11Þ

where MSEðqjÞ is the distortion associated with quantizer qj.
Fig. 1 shows the MSE as a function of the code length for
different (m; k�) tuples, where the code length is l ¼ m log2 k

�,
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TABLE 1
Memory Usage of the Codebook and Assignment Complexity

for Different Quantizers

HKM is parametrized by tree height l and the branching factor bf .

Fig. 1. SIFT: Quantization error associated with the parametersm and k�.
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if k� is a power of two. The curves are obtained for a set of

128-dimensional SIFT descriptors, see Section 5 for details.

One can observe that for a fixed number of bits, it is better to

use a small number of subquantizers with many centroids

than having many subquantizers with few bits. At the

extreme, when m ¼ 1, the product quantizer becomes a

regular k-means codebook.
High values of k� increase the computational cost of the

quantizer, as shown by Table 1. They also increase the

memory usage of storing the centroids (k� �D floating-

point values), which further reduces the efficiency if the

centroid look-up table no longer fits in cache memory. In

the case where m ¼ 1, we cannot afford to use more than

16 bits to keep this cost tractable. Using k� ¼ 256 and m ¼ 8

is often a reasonable choice.

3 SEARCHING WITH QUANTIZATION

Nearest neighbor search depends on the distances between

the query vector and the database vectors or, equivalently,

the squared distances. The method introduced in this section

compares the vectors based on their quantization indices. We

first explain how the product quantizer properties are used

to compute the distances. Then we provide a statistical

bound on the distance estimation error, and propose a

refined estimator for the squared euclidean distance.

3.1 Computing Distances Using Quantized Codes

Let us consider the query vector x and a database vector y.

We propose two methods to compute an approximate

euclidean distance between these vectors, a symmetric and

a asymmetric one. See Fig. 2 for an illustration.
Symmetric distance computation (SDC). Both the

vectors x and y are represented by their respective centroids

qðxÞ and qðyÞ. The distance dðx; yÞ is approximated by the

distance d̂ðx; yÞ ¼4 dðqðxÞ; qðyÞÞ, which is efficiently obtained

using a product quantizer

d̂ðx; yÞ ¼ d
�
qðxÞ; qðyÞ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

d
�
qjðxÞ; qjðyÞ

�2
s

; ð12Þ

where the distance dðcj;i; cj;i0 Þ2 is read from a look-up table

associated with the jth subquantizer. Each look-up table

contains all of the squared distances between pairs of

centroids ði; i0Þ of the subquantizer, or ðk�Þ2 squared

distances.1

Asymmetric distance computation (ADC). The database

vector y is represented by qðyÞ, but the query x is not

encoded. The distance dðx; yÞ is approximated by the

distance ~dðx; yÞ ¼4 d
�
x; qðyÞ

�
, which is computed using the

decomposition

~dðx; yÞ ¼ d
�
x; qðyÞ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

dðujðxÞ; qjðujðyÞÞÞ2
s

; ð13Þ

where the squared distances dðujðxÞ; cj;iÞ2 : j ¼ 1 . . .m; i ¼
1 . . . k�, are computed prior to the search.

For nearest neighbors search, we do not compute the

square roots in practice: The square root function is

monotonically increasing and the squared distances pro-

duces the same vector ranking.
Table 2 summarizes the complexity of the different steps

involved in searching the k nearest neighbors of a vector x

in a data set Y of n ¼ jYj vectors. One can see that SDC and

ADC have the same query preparation cost, which does

not depend on the data set size n. When n is large

(n > k�D�), the most consuming operations are the

summations in (12) and (13). The complexity given in this

table for searching the k smallest elements is the average

complexity for n� k and when the elements are arbitrarily

ordered ([23], Section 5.3.3, (17)).
The only advantage of SDC over ADC is to limit the

memory usage associated with the queries, as the query

vector is defined by a code. This is, in most cases, not

relevant and one should then use the asymmetric version,

which obtains a lower distance distortion for a similar

complexity. We will focus on ADC in the rest of this section.

3.2 Analysis of the Distance Error

In this section, we analyze the distance error when using
~dðx; yÞ instead of dðx; yÞ. This analysis does not depend on

the use of a product quantizer and is valid for any quantizer

satisfying Lloyd’s optimality conditions defined by (4) and

(5) in Section 2.
In the spirit of the mean squared error criterion used for

reconstruction, the distance distortion is measured by the

mean squared distance error (MSDE) on the distances:
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1. In fact, it is possible to store only k� ðk� � 1Þ=2 precomputed squared
distances because this distance matrix is symmetric and the diagonal
elements are zeros.

Fig. 2. Illustration of the symmetric and asymmetric distance computa-

tion. The distance dðx; yÞ is estimated with either (a) the distance

dðqðxÞ; qðyÞÞ or (b) the distance dðx; qðyÞÞ. The mean squared error on

the distance is, on average, bounded by the quantization error.

TABLE 2
Algorithm and Computational Costs Associated with

Searching the k Nearest Neighbors Using the Product Quantizer
for Symmetric and Asymmetric Distance Computations

(SDC, ADC)
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MSDEðqÞ ¼4
ZZ
ðdðx; yÞ � ~dðx; yÞÞ2 pðxÞdx pðyÞdy: ð14Þ

The triangular inequality gives

dðx; qðyÞÞ � dðy; qðyÞÞ � dðx; yÞ � dðx; qðyÞÞ þ dðy; qðyÞÞ;
ð15Þ

and, equivalently,

ðdðx; yÞ � dðx; qðyÞÞÞ2 � dðy; qðyÞÞ2: ð16Þ

Combining this inequality with (14), we obtain

MSDEðqÞ �
Z
pðxÞ

Z
d
�
y; qðyÞ

�2
pðyÞ dy

� 	
dx ð17Þ

� MSEðqÞ; ð18Þ

where MSEðqÞ is the mean squared error associated with
quantizer q (3). This inequality, which holds for any
quantizer, shows that the distance error of our method is
statistically bounded by the MSE associated with the
quantizer. For the symmetric version, a similar derivation
shows that the error is statistically bounded by 2�MSEðqÞ.
It is therefore worth minimizing the quantization error as this
criterion provides a statistical upper bound on the distance
error. If an exact distance calculation is performed on the
highest ranked vectors, as done in LSH [5], the quantization
error can be used (instead of selecting an arbitrary set of
elements) as a criterion to dynamically select the set of vectors
on which the postprocessing should be applied.

3.3 Estimator of the Squared Distance

As shown later in this section, using the estimations d̂ or ~d
leads to underestimating, on average, the distance between
points. Fig. 3 shows the distances obtained when querying a
SIFT descriptor in a data set of 1,000 SIFT vectors. It
compares the true distance against the estimates computed
with (12) and (13). One can clearly see the bias on these
distance estimators. Unsurprisingly, the symmetric version
is more sensitive to this bias.

Hereafter, we compute the expectation of the squared
distance in order to cancel the bias. The approximation qðyÞ
of a given vector y is obtained, in the case of the product

quantizer, from the subquantizers indexes qj
�
ujðyÞ

�
,

j ¼ 1 . . .m. The quantization index identifies the cells Vi
in which y lies. We can then compute the expected squared
distance ~eðx; qðyÞÞ between x, which is fully known in our
asymmetric distance computation method, and a random
variable Y , subject to qðY Þ ¼ qðyÞ ¼ ci, which represents all

the hypothesis on y knowing its quantization index.

~eðx; yÞ ¼4 IEY

�
ðx� Y Þ2jqðY Þ ¼ ci

�
ð19Þ

¼
Z
Vi
ðx� yÞ2 pðyjiÞ dy; ð20Þ

¼ 1

pi

Z
Vi
ðx� ci þ ci � yÞ2 pðyÞ dy: ð21Þ

Developing the squared expression and observing, using
Lloyd’s condition of (5), thatZ

Vi
ðy� ciÞ pðyÞ dy ¼ 0; ð22Þ

Equation (21) simplifies to

~eðx; yÞ ¼ ðx� qðyÞÞ2 þ
Z
Vi
ðx� yÞ2 pðyjqðyÞ ¼ ciÞ dy ð23Þ

¼ ~dðx; yÞ2 þ �ðq; qðyÞÞ; ð24Þ

where we recognize the distortion �
�
q; qðyÞ

�
associated with

the reconstruction of y by its reproduction value.
Using the product quantizer and (24), the computation of

the expected squared distance between a vector x and the
vector y, for which we only know the quantization indices
qj
�
ujðyÞ

�
, consists of correcting (13) as

~eðx; yÞ ¼ ~dðx; yÞ2 þ
X
j

�jðyÞ; ð25Þ

where the correcting term, i.e., the average distortion

�jðyÞ ¼4 � qj; qj
�
ujðyÞ

�� �
ð26Þ

associated with quantizing ujðyÞ to qjðyÞ using the
jth subquantizer, is learned and stored in a look-up table
for all indexes of I j.

Performing a similar derivation for the symmetric
version, i.e., when both x and y are encoded using the

product quantizer, we obtain the following corrected
version of the symmetric squared distance estimator:

êðx; yÞ ¼ d̂ðx; yÞ2 þ
X
j

�jðxÞ þ
X
j0
�j0 ðyÞ: ð27Þ

Discussion: Fig. 4 illustrates the probability distribution
function of the difference between the true distance and the
ones estimated by (13) and (25). It has been measured on a
large set of SIFT descriptors. The bias of the distance
estimation by (13) is significantly reduced in the corrected
version. However, we observe that correcting the bias leads,
in this case, to a higher variance of the estimator, which is a
common phenomenon in statistics. Moreover, for the
nearest neighbors, the correcting term is likely to be higher
than the measure of (13), which means that we penalize the
vectors with rare indexes. Note that the correcting term is
independent of the query in the asymmetric version.
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Fig. 3. Typical query of a SIFT vector in a set of 1,000 vectors:

Comparison of the distance dðx; yÞ obtained with the SDC and ADC

estimators. We have used m ¼ 8 and k� ¼ 256, i.e., 64-bit code vectors.

Best viewed in color.



In our experiments, we observe that the correction

returns inferior results on average. Therefore, we advocate

the use of (13) for the nearest neighbor search. The

corrected version is useful only if we are interested in the

distances themselves.

4 NONEXHAUSTIVE SEARCH

Approximate nearest neighbor search with product quanti-

zers is fast (only m additions are required per distance

calculation) and significantly reduces the memory require-

ments for storing the descriptors. Nevertheless, the search is

exhaustive. The method remains scalable in the context of a

global image description [15], [17]. However, if each image

is described by a set of local descriptors, an exhaustive

search is prohibitive, as we need to index billions of

descriptors and to perform multiple queries [18].
To avoid exhaustive search we combine an inverted file

system [24] with the asymmetric distance computation

(IVFADC). An inverted file quantizes the descriptors and

stores image indices in the corresponding lists, see the step

“coarse quantizer” in Fig. 5. This allows rapid access to a

small fraction of image indices and was shown to be

successful for very large scale search [24]. Instead of storing

an image index only, we add a small code for each

descriptor, as first done in [18]. Here, we encode the

difference between the vector and its corresponding coarse

centroid with a product quantizer, see Fig. 5. This approach

significantly accelerates the search at the cost of a few

additional bits/bytes per descriptor. Furthermore, it

slightly improves the search accuracy, as encoding the

residual is more precise than encoding the vector itself.

4.1 Coarse Quantizer, Locally Defined Product
Quantizer

Similarly to the “Video-Google” approach [24], a codebook is

learned using k-means, producing a quantizer qc, referred to

as the coarse quantizer in the following. For SIFT descriptors,

the number k0 of centroids associated with qc typically ranges

from k0 ¼ 1;000 to k0 ¼ 1;000;000. It is therefore small
compared to that of the product quantizers used in Section 3.

In addition to the coarse quantizer, we adopt a strategy
similar to that proposed in [18], i.e., the description of a
vector is refined by a code obtained with a product quantizer.
However, in order to take into account the information
provided by the coarse quantizer, i.e., the centroid qcðyÞ
associated with a vector y, the product quantizer qp is used to
encode the residual vector

rðyÞ ¼ y� qcðyÞ; ð28Þ

corresponding to the offset in the Voronoi cell. The energy
of the residual vector is small compared to that of the vector
itself. The vector is approximated by

€y ¼4 qcðyÞ þ qpðy� qcðyÞÞ: ð29Þ

It is represented by the tuple
�
qcðyÞ; qpðrðyÞÞ

�
. By analogy with

the binary representation of a value, the coarse quantizer
provides the most significant bits, while the product
quantizer code corresponds to the least significant bits.

The estimator of dðx; yÞ, where x is the query and y the
database vector, is computed as the distance €dðx; yÞ between
x and €y:

€dðx; yÞ ¼ dðx; €yÞ ¼ dðx� qcðyÞ; qpðy� qcðyÞÞÞ: ð30Þ

Denoting by qpj the jth subquantizer, we use the following
decomposition to compute this estimator efficiently:

€dðx; yÞ2 ¼
X
j

dðujðx� qcðyÞÞ; qpjðujðy� qcðyÞÞÞÞ2: ð31Þ

Similarly to the ADC strategy, for each subquantizer qpj the
distances between the partial residual vector ujðx� qcðyÞÞ
and all of the centroids cj;i of qpj are preliminarily computed
and stored.
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Fig. 4. PDF of the error on the distance estimation d� ~d for the
asymmetric method, evaluated on a set of 10,000 SIFT vectors with
m ¼ 8 and k� ¼ 256. The bias (¼ �0:044) of the estimator ~d is corrected
(¼ 0:002) with the error quantization term �ðq; qðyÞÞ. However, the
variance of the error increases with this correction �2ðd� ~eÞ ¼ 0:00155,
whereas �2ðd� ~dÞ ¼ 0:00146.

Fig. 5. Overview of the inverted file with asymmetric distance

computation (IVFADC) indexing system. Top: insertion of a vector.

Bottom: search.



The product quantizer is learned on a set of residual
vectors collected from a learning set. Although the vectors
are quantized to different indexes by the coarse quantizer,
the resulting residual vectors are used to learn a unique
product quantizer. We assume that the same product
quantizer is accurate when the distribution of the residual
is marginalized over all the Voronoi cells. This probably
gives inferior results to the approach consisting of learning
and using a distinct product quantizer per Voronoi cell.
However, this would be computationally expensive and
would require storing k0 product quantizer codebooks, i.e.,
k0 � d� k� floating-points values, which would be memory-
intractable for common values of k0.

4.2 Indexing Structure

We use the coarse quantizer to implement an inverted file
structure as an array of lists L1 . . .Lk0 . If Y is the vector data
set to index, the list Li associated with the centroid ci of qc

stores the set fy 2 Y : qcðyÞ ¼ cig.
In inverted list Li, an entry corresponding to y contains a

vector identifier and the encoded residual qpðrðyÞÞ:

The identifier field is the overhead due to the inverted file
structure. Depending on the nature of the vectors to be
stored, the identifier is not necessarily unique. For instance,
to describe images by local descriptors, image identifiers
can replace vector identifiers, i.e., all vectors of the same
image have the same identifier. Therefore, a 20-bit field is
sufficient to identify an image from a data set of one million.
This memory cost can be reduced further using index
compression [25], [26], which may reduce the average cost
of storing the identifier to about 8 bits, depending on
parameters.2 Note that some geometrical information can
also be inserted in this entry, as proposed in [18] and [25].

4.3 Search Algorithm

The inverted file is the key to the nonexhaustive version of
our method. When searching the nearest neighbors of a
vector x, the inverted file provides a subset of Y for which
distances are estimated: Only the inverted list Li corre-
sponding to qcðxÞ is scanned.

However, x and its nearest neighbor are often not
quantized to the same centroid, but to nearby ones. To
address this problem, we use the multiple assignment
strategy of [27]. The query x is assigned to w indexes instead
of only one, which correspond to the w nearest neighbors of
x in the codebook of qc. All of the corresponding inverted
lists are scanned. Multiple assignment is not applied to
database vectors, as this would increase the memory usage.

Fig. 5 gives an overview of how a database is indexed

and searched.
Indexing a vector y proceeds as follows:

1. Quantize y to qcðyÞ.
2. Compute the residual rðyÞ ¼ y� qcðyÞ.

3. Quantize rðyÞ to qpðrðyÞÞ, which, for the product
quantizer, amounts to assigning ujðyÞ to qjðujðyÞÞ, for
j ¼ 1 . . .m.

4. Add a new entry to the inverted list corresponding to
qcðyÞ. It contains the vector (or image) identifier and
the binary code (the product quantizer’s indexes).

Searching the nearest neighbor(s) of a query x consists of

1. Quantize x to its w nearest neighbors in the
codebook qc.

For the sake of presentation, in the two next steps
we simply denote by rðxÞ the residuals associated
with these w assignments. The two steps are applied
to all w assignments.

2. Compute the squared distance dðujðrðxÞÞ; cj;iÞ2 for
each subquantizer j and each of its centroids cj;i.

3. Compute the squared distance between rðxÞ and all
of the indexed vectors of the inverted list. Using the
subvector-to-centroid distances computed in the
previous step, this consists in summing up
m looked-up values, see (31).

4. Select the K nearest neighbors of x based on the
estimated distances. This is implemented efficiently
by maintaining a Maxheap structure of fixed
capacity that stores the K smallest values seen so
far. After each distance calculation, the point
identifier is added to the structure only if its distance
is below the largest distance in the Maxheap.

Only Step 3 depends on the database size. Compared with
ADC, the additional step of quantizing x to qcðxÞ consists of
computing k0 distances between D-dimensional vectors.
Assuming that the inverted lists are balanced, about n�
w=k0 entries have to be parsed. Therefore, the search is
significantly faster than ADC, as shown in the next section.

5 EVALUATION OF NN SEARCH

In this section, we first present the data sets used for the
evaluation.3 We then analyze the impact of the parameters
for SDC, ADC, and IVFADC. Our approach is compared
to three state-of-the-art methods: spectral hashing [17],
Hamming embedding [18], and FLANN [7]. Finally, we
evaluate the complexity and speed of our approach.

5.1 Data Sets

We perform our experiments on two data sets, one with
local SIFT descriptors [21] and the other with global color
GIST descriptors [16]. We have three vector subsets per data
set: learning, database, and query. Both data sets were
constructed using publicly available data and software. For
the SIFT descriptors, the learning set is extracted from Flickr
images and the database and query descriptors are from the
INRIA Holidays images [18]. For GIST, the learning set
consists of the first 100 k images extracted from the tiny
image set of [14]. The database set is the Holidays image set
combined with Flickr1M used in [18]. The query vectors are
from the Holidays image queries. Table 3 summarizes the
number of descriptors extracted for the two data sets.
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2. An average cost of 11 bits is reported in [25] using delta encoding and
Huffman codes.

3. Both the software and the data used in these experiments are available
at http://www.irisa.fr/texmex/people/jegou/ann.php.



The search quality is measured with recall@R, i.e., the
proportion of query vectors for which the nearest
neighbor is ranked in the first R positions. This measure
indicates the fraction of queries for which the nearest
neighbor is retrieved correctly if a short list of R vectors
is verified using euclidean distances. Furthermore, the
curve obtained by varying R corresponds to the distribu-
tion function of the ranks and the point R ¼ 1 corre-
sponds to the “precision” measure used in [7] to evaluate
ANN methods.

In practice, we are often interested in retrieving the
K nearest neighbors (K > 1) and not only the nearest
neighbor. We do not include these measures in the paper, as
we observed that the conclusions for K ¼ 1 remain valid for
K > 1.

5.2 Memory versus Search Accuracy: Trade-Offs

The product quantizer is parameterized by the number of

subvectorsm and the number of quantizers per subvector k�,

producing a code of length m� log2 k
�. Fig. 6 shows the

trade-off between code length and search quality for our

SIFT descriptor data set. The quality is measured for

recall@100 for the ADC and SDC estimators, for m 2
f1; 2; 4; 8; 16g and k� 2 f24; 26; 28; 210; 212g. As for the quan-

tizer distortion in Fig. 1, one can observe that for a fixed

number of bits, it is better to use a small number of

subquantizers with many centroids than to have many

subquantizers with few bits. However, the comparison also

reveals that MSE underestimates, for a fixed number of bits,

the quality obtained for a large number of subquantizers

against using more centroids per quantizer.
As expected, the asymmetric estimator ADC significantly

outperforms SDC. For m ¼ 8 we obtain the same accuracy
for ADC and k� ¼ 64 as for SDC and k� ¼ 256. Given that
the efficiency of the two approaches is equivalent, we
advocate not to quantize the query when possible, but only
the database elements.

Fig. 7 evaluates the impact of the parameters for the
IVFADC method introduced in Section 4. For this approach,
we have, in addition, to set the codebook size k0 and the
number of neighboring cells w visited during the multiple
assignment. We observe that the recall@100 strongly
depends on these parameters, and that increasing the code
length is useless if w is not big enough, as the nearest
neighbors which are not assigned to one of the w centroids
associated with the query are definitely lost.

This approach is significantly more efficient than SDC
and ADC on large data sets, as it only compares the query
to a small fraction of the database vectors. The proportion

of the data set to visit is roughly linear in w=k0. For a fixed

proportion, it is worth using higher values of k0, as this

increases the accuracy, as shown by comparing, for the

tuple ðm;wÞ, the parameters ð1;024; 1Þ against ð8;192; 8Þ and

ð1;024; 8Þ against ð8;192; 64Þ.
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TABLE 3
Summary of the SIFT and GIST Data Sets

Fig. 6. SDC and ADC estimators evaluated on the SIFT data set:
recall@100 as a function of the memory usage (code length ¼ m �
log2 k

�) for different parameters (k� ¼ 16; 64; 256; . . . ; 4;096 and m ¼ 1; 2;
4; 8; 16). The missing point (m ¼ 16, k� ¼ 4;096) gives recall@100 ¼ 1 for
both SDC and ADC.

Fig. 7. SIFT data set: recall@100 for the IVFADC approach as a function

of the memory usage for k� ¼ 256 and varying values of m ¼ f1; 2; 4;
8; 16g, k0 ¼ f1;024; 8;92g, and w ¼ f1; 8; 64g.



5.3 Impact of the Component Grouping

The product quantizer defined in Section 2 creates the
subvectors by splitting the input vector according to the
order of the components. However, vectors such as SIFT
and GIST descriptors are structured because they are built
as concatenated orientation histograms. Each histogram is
computed on grid cells of an image patch. Using a product
quantizer, the bins of a histogram may end up in different
quantization groups.

The natural order corresponds to grouping consecutive
components, as proposed in (8). For the SIFT descriptor, this
means that histograms of neighboring grid cells are
quantized together. GIST descriptors are composed of three
320-dimension blocks, one per color channel. The product
quantizer splits these blocks into parts.

To evaluate the influence of the grouping, we modify the
uj operators in (8) and measure the impact of their
construction on the performance of the ADC method. Table 4
shows the effect on the search quality, measured by
recall@100. The analysis is restricted to the parameters k� ¼
256 and m 2 f4; 8g.

Overall, the choice of the components appears to have a
significant impact of the results. Using a random order
instead of the natural order leads to poor results. This is
true even for GIST, for which the natural order is
somewhat arbitrary.

The “structured” order consists in grouping together
dimensions that are related. For the m ¼ 4 SIFT quantizer,
this means that the 4� 4 patch cells that make up the
descriptor [21] are grouped into 4 2� 2 blocks. For the other
two, it groups together dimensions that have the same
index modulo 8. The orientation histograms of SIFT and
most of GIST’s have eight bins, so this ordering quantizes
together bins corresponding to the same orientation. On
SIFT descriptors, this is a slightly less efficient structure,
probably because the natural order corresponds to spatially
related components. On GIST, this choice significantly
improves the performance. Therefore, we use this ordering
in the following experiments.

Discussion: A method that automatically groups the
components could further improve the results. This seems
particularly important if we have no prior knowledge about
the relationship between the components as in the case of
bag-of-features. A possible solution is the minimum sum-
squared residue coclustering [28] algorithm.

5.4 Comparison with the State of the Art

Comparison with Hamming embedding methods: We
compare our approach to spectral hashing (SH) [17], which

maps vectors to binary signatures. The search consists of
comparing the Hamming distances between the database
signatures and the query vector signature. This approach
was shown to outperform the restricted Boltzmann machine
of [15]. We have used the publicly available code. We also
compare to the Hamming embedding (HE) method of [18],
which also maps vectors to binary signatures. Similarly to
IVFADC, HE uses an inverted file, which avoids comparing
to all the database elements.

Figs. 8 and 9 show, respectively, for the SIFT and the
GIST data sets, the rank repartition of the nearest neighbors
when using a signature of size 64 bits. For our product
quantizer we have used m ¼ 8 and k� ¼ 256, which give
similar results in terms of runtime. All of our approaches
significantly outperform spectral hashing4 on the two data
sets. To achieve the same recall as spectral hashing, ADC
returns an order of magnitude fewer vectors.

The best results are obtained by IVFADC, which for low
ranks provides an improvement over ADC and significantly
outperforms spectral hashing. This strategy avoids the
exhaustive search and is therefore much faster, as discussed
in the next section. This partial scan explains why the
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TABLE 4
Impact of the Dimension Grouping on the Retrieval Performance

of ADC (recall@100, k� ¼ 256)

Fig. 8. SIFT data set: recall@R for varying values of R. Comparison of

the different approaches SDC, ADC, IVFADC, spectral hashing [17], and

HE [18]. We have used m ¼ 8, k� ¼ 256 for SDC/ADC and k0 ¼ 1;024 for

HE [18] and IVFADC.

Fig. 9. GIST data set: recall@R for varying values of R. Comparison of

the different approaches SDC, ADC, IVFADC, and spectral hashing [17].

We have usedm ¼ 8, k� ¼ 256 for SDC/ADC and k0 ¼ 1;024 for IVFADC.

4. In defense of [15], [17], which can be learned for arbitrary distance
measures, our approach is adapted to the euclidean distance only.



IVFADC and HE curves stop at some point, as only a
fraction of the database vectors are ranked. Comparing
these two approaches, HE is significantly outperformed by
IVFADC. The results of HE are similar to spectral hashing,
but HE is more efficient.

Comparison with FLANN. The approximate nearest-
neighbor search technique of Muja and Lowe [7] is based on
hierarchical structures (KD-trees and hierarchical k-means
trees). The software package FLANN automatically selects
the best algorithm and parameters for a given data set. In
contrast with our method and spectral hashing, all vectors
need to remain in RAM as the method includes a reranking
stage that computes the real distances for the candidate
nearest neighbors.

The evaluation is performed on the SIFT data set by
measuring the 1-recall@1, that is, the average proportion of
true NNs ranked first in the returned vectors. This measure
is referred to as precision in [7].

For the sake of comparison with FLANN, we added a
verification stage to our IVFADC method: IVFADC queries
return a shortlist of R candidate nearest neighbors using the
distance estimation. The vectors in the short list are

reordered using the real distance, as done in [5], [7], and
the closest one is returned. Note that, in this experimental
setup, all of the vectors are stored in main memory. This
requirement seriously limits the scale on which reordering
can be used.

The IVFADC and FLANN methods are both evaluated at
different operating points with respect to precision and
search time. For FLANN, the different operating points are
obtained with parameters generated automatically for var-
ious target precisions. For IVFADC, they are obtained by
varying the number k0 of coarse centroids, the number w of
assignments and the shortlist sizeR. The product quantizer is
generated using k� ¼ 256 and m ¼ 8, i.e., 64-bit codes. This
choice is probably not optimal for all operating points.

Fig. 10 shows that the results obtained by IVFADC are
better than those of FLANN for a large range of operating
points. Moreover, our method has a much smaller memory
footprint than FLANN: The indexing structure occupies less
than 25 MB, while FLANN requires more than 250 MB of
RAM. Note, however, that both are negligible compared to
the memory occupied by the vectors in the case of large data
sets. On such a scale, the reranking stage is not feasible and
only memory-aware approaches (HE, SH, and our methods)
can be used.

5.5 Complexity and Speed

Table 5 reports the search time of our methods. For
reference, we report the results obtained with the spectral
hashing algorithm of [17] on the same data set and machine
(using only one core). Since we use a separate learning set,
we use the out-of-sample evaluation of this algorithm. Note
that for SH we have reimplemented the Hamming distance
computation in C in order to have the approaches similarly
optimized. The algorithms SDC, ADC, and SH have similar
runtimes. IVFADC significantly improves the performance
by avoiding an exhaustive search. Higher values of k0 yield
higher search efficiencies for large data sets, as the search
benefits from parsing a smaller fraction of the memory.
However, for small data sets, the complexity of the coarse
quantizer may be the bottleneck if k0 �D > n=k0 when
using a exhaustive assignment for qc. In that case the ADC
variant may be preferred. For large data sets and using an
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Fig. 10. IVFADC versus FLANN: Trade-offs between search quality
(1-recall@1) and search time. The IVFADC method is parameterized by
the short list size R used for reranking the vector with the L2 distance
and the two parameters w and k0 of the inverted file, which correspond to
the number of assignments and to the number of coarse centroids.

TABLE 5
GIST Data Set (500 Queries): Search Timings for 64-Bit Codes and Different Methods

We have used m ¼ 8 and k� ¼ 256 for SDC, ADC, and IVFADC.



efficient assignment strategy for the coarse quantizer,
higher values of k0 generally lead to better efficiency, as
first shown in [13]. In this work, the authors propose a
hierarchical quantizer to efficiently assign descriptors to
one million centroids.

5.6 Large-Scale Experiments

To evaluate the search efficiency of the product quantizer
method on larger data sets, we extracted about two billion
SIFT descriptors from one million images. Search is
performed with 30,000 query descriptors from 10 images.
We compared the IVFADC and HE methods with similar
parameters. In particular, the amount of memory that is
scanned for each method and the cost of the coarse
quantization are the same.

The query times per descriptor are shown in Fig. 11. The
cost of the extra quantization step required by IVFADC
appears clearly for small database sizes. For larger scales,
the distance computation with the database vectors become
preponderant. The processing that is applied to each
element of the inverted lists is approximately as expensive
in both cases. For HE, it is a Hamming distance computa-
tion, implemented as eight table lookups. For IVFADC it is
a distance computation that is also performed by eight table
lookups. Interestingly, the floating-point operations in-
volved in IVFADC are not much more expensive than the
simple binary operations of HE.

5.7 Image Search

We have evaluated our method within an image search
system based on local descriptors. For this evaluation, we
compare our method with the HE method of [18] on the
INRIA Holidays data set, using the preprocessed set of
descriptors available online. The comparison is focused
on large scale indexing, i.e., we do not consider the
impact of a postverification step [21], [29] or geometrical
information [18].

Fig. 12 shows the search performance in terms of mean
average precision as a function of the size of the data set.
We have used the same coarse quantizer (k0 ¼ 20;000) and a
single assignment strategy (w ¼ 1) for both of the ap-
proaches and fixed k� ¼ 256 for IVFADC. For a given
number of bits (32 or 64), we have selected the best choice of

the Hamming threshold for HE. Similarly, we have adjusted
the number of nearest neighbors to be retrieved for
IVFADC.

One can observe that the gain obtained by IVFADC is
significant. For example, for one million distractors, the
mAP of 0.497 reported in [18] with 64-bit signatures is
improved to 0.517.

6 CONCLUSION

We have introduced product quantization for approximate
nearest neighbor search. Our compact coding scheme
provides an accurate approximation of the euclidean
distance. Moreover, it is combined with an inverted file
system to avoid exhaustive search, resulting in high
efficiency. Our approach significantly outperforms the state
of the art in terms of the trade-off between search quality
and memory usage. Experimental results for SIFT and GIST
image descriptors are excellent and show that grouping the
components based on our prior knowledge of the descriptor
design further improves the results. The scalability of our
approach is validated on a data set of two billion vectors.

ACKNOWLEDGMENTS

The authors would like to thank the search engine project
QUAERO as well as the ANR project GAIA for their
financial support.

REFERENCES

[1] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When Is
‘Nearest Neighbor’ Meaningful?” Proc. Int’l Conf. Database Theory,
pp. 217-235, Aug. 1999.
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