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Abstract—A new data structure for efficient similarity search in very large datasets of high-dimensional vectors is introduced. This
structure called the inverted multi-index generalizes the inverted index idea by replacing the standard quantization within inverted
indices with product quantization. For very similar retrieval complexity and pre-processing time, inverted multi-indices achieve a much
denser subdivision of the search space compared to inverted indices, while retaining their memory efficiency. Our experiments with
large datasets of SIFT and GIST vectors demonstrate that because of the denser subdivision, inverted multi-indices are able to return
much shorter candidate lists with higher recall. Augmented with a suitable reranking procedure, multi-indices were able to significantly
improve the speed of approximate nearest neighbor search on the dataset of 1 billion SIFT vectors compared to the best previously
published systems, while achieving better recall and incurring only few percent of memory overhead.

Index Terms—Image retrieval, Index, Nearest neighbor search, Product Quantization.
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1 INTRODUCTION

IN computer vision, inverted indices (inverted files) [1]
are widely used for retrieval and similarity search. For

a large dataset of visual descriptors, a typical inverted
index is built around a codebook containing a set of
codewords, i.e. a representative set of vectors that may
be constructed by performing clustering on the initial
dataset. An inverted index then stores the list of vectors
that lie in the proximity of each codeword (belong to
its Voronoi cell). The purpose of an inverted index is
then to efficiently generate a list of dataset vectors that
lie close to any query vector. Given a query, either the
closest codeword or a set of few closest codewords are
identified. The lists corresponding to those codewords
are then concatenated to produce the answer to the
query.

Querying the inverted index avoids evaluating dis-
tances between the query and every point in the dataset
and, thus, provides a substantial speed-up over the
exhaustive search. Furthermore, as the index does not
need to contain the original dataset vectors to perform
the search, the memory footprint of each data point can
be reduced significantly, and only useful metadata (e.g.
image IDs or heavily compressed original vectors) can
be stored in the list entries. Because of these efficiency
benefits, inverted indices are widely used within com-
puter vision systems such as image and video search [1]
or location identification [2]. More generally, they can be
used within any computer vision task that involves fast
near(est) neighbor retrieval or kernel density estimation
(i.e. image classification [3], [4], understanding [5], image
editing [6], etc.).

The efficiency of inverted indices has however cer-
tain limitations that begin to show up for very large
datasets of vectors (hundreds of million to billions),
which computer vision researchers and practitioners are

now tackling [7]–[9]. In this scenario, a very fine parti-
tion of the search space is desirable to avoid returning
excessively large lists in response to the queries or, put
differently, to return vectors that are better localized
around the query point. Unfortunately, increasing the
number of codewords in order to achieve finer partition
also increases the query time and the index construction
time. While approximate nearest neighbor approaches
(e.g. tree codebooks [10] or kd-trees [11]) may be invoked
to make this deceleration graceful, these techniques often
reduce the accuracy (recall and precision) of the returned
candidate lists considerably.

The goal of this paper is to introduce and evaluate
a new data structure called the inverted multi-index that
is in many respects similar to the inverted index and
can therefore be used within computer vision systems
in a similar way. The advantage of multi-indices is in
their ability to produce much finer subdivisions of the
search space without increasing the query time and
the preprocessing time compared to inverted indices
with moderately-sized codebooks (importantly, the rel-
ative increase of memory usage for large datasets is
also small). Consequently, multi-indices result in faster
and more accurate retrieval and approximate nearest
neighbor search, especially when dealing with very large
scale datasets, while retaining the memory efficiency of
standard inverted indices.

In a nutshell, inverted multi-indices are obtained by
replacing the vector quantization inside inverted indices
with the product quantization (PQ) [12]. PQ proceeds
by splitting high-dimensional vectors into dimension
groups. PQ then effectively approximates each vector as
a concatenation of several codewords of smaller dimen-
sionality, coming from several codebooks pretrained for
each group of dimensions separately. Following the PQ
idea, an inverted multi-index is constructed as a multi-
dimensional table. The entries of this table correspond
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Fig. 1: Indexing the set of 600 points (small black) distributed non-uniformly within the unit 2D square. Left – the inverted
index based on standard quantization (the codebook has 16 2D codewords; boundaries are in green). Right – the inverted
multi-index based on product quantization (each of the two codebooks has 16 1D codewords). The number of operations
needed to match a query to codebooks is the same for both structures. Two example queries are issued (light-blue and
light-red circles). The lists returned by the inverted index (left) contain 45 and 62 words respectively (circled). Note that
when a query lies near a space partition boundary (as happens most often in high dimensions) the resulting list is heavily
“skewed” and may not contain many of the close neighbors. Note also that the inverted index is not able to return lists of a
pre-specified small length (e.g. 30 points). For the same queries, the candidate lists of at least 30 vectors are requested from
the inverted multi-index (right) and the lists containing 31 and 32 words are returned (circled). As even such short candidate
lists require visiting several nearest cells in the partition (which can be done efficiently via the multi-sequence algorithm),
the resulting vector sets span the neighborhoods that are much less “skewed” (i.e., the neighborhoods are approximately
centered at the queries). In high dimensions, the capability to visit many cells that surround the query from different
directions translates into considerably higher accuracy of retrieval and nearest neighbor search.

to all possible tuples of codewords from the codebooks
corresponding to different dimension groups. This multi-
dimensional table replaces a “flat” table containing en-
tries corresponding to codewords of the standard in-
verted index.

Similarly to a standard inverted index, each entry
of a multi-index table corresponds to a part of the
original vector space and contains a list of points that fall
within that part. Importantly, we propose a simple and
efficient algorithm that produces a sequence of multi-
index entries ordered by the increasing distance between
the given query vector and the centroid of the corre-
sponding entry. Similarly to standard inverted indices,
concatenating the vector lists for a certain number of
entries that are closest to the query vector then produces
the candidate list.

Crucially, given comparable time budgets for querying
the dataset as well as for the initial index construction,
inverted multi-indices subdivide the vector space orders
of magnitude more densely compared to standard in-
verted indices (Figure 1). Our experiments demonstrate
the advantages resulting from this property, in particular
in the context of very large scale approximate nearest

neighbor search. We evaluate the inverted multi-index
on the BIGANN dataset of 1 billion SIFT vectors recently
introduced by Jegou et al. [13] as well as on the “Tiny
Images” dataset of 80 million GIST vectors introduced
by [9]. We show that as a result of the “extra-fine”
granularity, the candidate lists produced by querying
multi-indices are more accurate (have shorter lengths
and higher probability of containing true nearest neigh-
bors) compared to standard inverted indices. We also
demonstrate that in combination with a suitable rerank-
ing procedure, multi-indices substantially improve the
state-of-the-art approximate nearest neighbor retrieval
performance on the BIGANN dataset. Finally, we evalu-
ate the new structure for the task of large scale duplicate
image detection.

2 RELATED WORK

The use of inverted indices has a long history in infor-
mation retrieval [14]. Their use in computer vision was
pioneered by Sivic and Zisserman [1]. Since then, a large
number of improvements that transfer further ideas
from text retrieval (e.g. [15]), improve the quantization
process (e.g. [16]), and integrate the query process with
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geometric verification (e.g. [17]) have been proposed.
Many of these improvements can be used in conjunction
with inverted multi-indices in the same way as with
regular inverted indices.

Approximate near(est) neighbor (ANN) search is a
core operation in AI. ANN-systems based on tree-based
indices (e.g. [11]) as well as on random projections (e.g.
[18]) are often employed. However, the large memory
footprint of these methods limits their use to smaller
datasets (up to millions of vectors). Recently, lossy com-
pression schemes that admit both compact storage and
efficient distance evaluations and are therefore more
suitable for large-scale datasets have been developed
[19], [20]. Towards this end, binary encoding schemes
(e.g. [21]–[23]) as well as product quantization [12] have
brought down both memory consumption and distance
evaluation time by order(s) of magnitude compared to
manipulating uncompressed vectors, to the point where
exhaustive search can be used to query rather large
datasets (up to many millions of vectors).

The idea of fast distance computation via product
quantization introduced by Jegou et al. [12] has served
as a primary inspiration for this work. Our contribution,
however, is complementary to that of [12]. In fact, the
systems presented by Jegou et al. in [12], [13], [24] use
standard inverted indices and, consequently, have to
rerank rather long candidate lists when querying very
large datasets in order to achieve high recall. Unlike [12],
[13], [24], we focus on the use of PQ for indexing and
candidate list generation. We also note that while we
combine multi-indices with the PQ-based reranking [12]
in some of our experiments, one can also employ binary
embedding [25] or any other compression/fast distance
computation scheme to rerank lists returned by a multi-
index (or, depending on the application, omit the rerank-
ing altogether).

Since our initial publication [26] two improvements
for the nearest neighbor search with multi-index have
been suggested. First, Ge et al. [27] have improved
the accuracy of the search by replacing the product
quantization with the optimized product quantization
(OPQ) [28], [29]. Secondly, in Kalantidis et al. [30] and in
our report [31], the idea of local codebooks that describe
the distribution of the points within each cell of a multi-
index has been demonstrated to bring further boost to
search accuracy.

In general, this work represents a very substantial
extension of our previous conference paper [26] with
an additional material added from our report [31]. The
main algorithmical novelty compared to [26] is a method
that enables fast reranking of candidate lists during the
approximate nearest neighbor search based on multi-
index. The resulting speed improvement is substantial
(especially for short codes), while keeping the search
accuracy exactly the same. The speed improvement at
retrieval time comes at the cost of simple precomputa-
tions and lookup tables of limited size stored in memory.
On top of that, we evaluate the combination of inverted

multi-indices and principal component analysis (PCA),
include a detailed comparison between the second-order
and the fourth-order inverted multi-indices, and evaluate
inverted multi-indeces on the task of near-duplicate
detection. Finally, for the sake of completeness, in the
experimental section we evaluate the improvements of
the inverted multi-index-based nearest neighbor search
discussed above.

3 THE INVERTED MULTI-INDEX

The structure of the inverted multi-index. We now
explain how an inverted multi-index is organized. Along
the way, we will compare the analogous parts between
inverted multi-indices and standard inverted indices.

We assume that a large collection D of N M -
dimensional vectors D = {p1,p2, . . . ,pN}, pi ∈ RM
is given. The construction of a standard inverted in-
dex then starts with learning a codebook W of K M -
dimensional vectors W = {w1,w2, . . . ,wK} via a k-
means algorithm. The initial dataset is then split into
K lists W1,W2, . . . ,WK , where each list Wi contains all
vectors that fall in its Voronoi cell in RM , i.e. Wi =
{p ∈ D|i = argminj d(p,wj)}. Here, d is a distance
measure in RM . In practice, each list Wi can be rep-
resented in memory as a contiguous array, where each
entry may contain the compressed version of the initial
vector (which is useful for reranking) and typically some
metadata associated with the vector (e.g. the class label
or the ID of the image that the visual descriptor p was
sampled from).

Following the product quantization idea [12], the in-
verted multi-index is organized around splitting the M
input dimensions into several dimension blocks. The
number of blocks affects the accuracy of retrieval and
its speed. In previous works where PQ was used for
compression and fast distance evaluation, the best trade-
off was achieved for 8 or so blocks [12], [13], [24]. In the
multi-index case, however, it is optimal to split dimen-
sions in just two blocks, at least for the characteristic
scales considered in our evaluation and assuming that
the accuracy and low query time are more important
than low index construction time. We comment more
on the choice of the number of blocks below. For the
time being, to simplify the explanation we discuss how
a multi-index can be built for the case of splitting vectors
into two halves. Where required, we refer to this case as
the second-order inverted multi-index. It will be evident
how to generalize the proposed algorithms to higher-
order inverted multi-indices (which split vectors into
more than two dimension groups).

Let pi = [p1
i p2

i ] be the decomposition of a vector
pi ∈ RM from the dataset into two halves, where
p1
i ∈ R

M
2 ,p2

i ∈ R
M
2 . As in the case of other PQ-based

systems, inverted multi-indices perform better when the
correlation between D1 = {p1

i } and D2 = {p2
i } is lower

and the amount of variance within D1 and D2 are closer
to each other. For SIFT-vectors, splitting them directly
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Fig. 2: Top – The overview of the query process within the inverted multi-index. First, the two halves of the query q1 and
q2 are matched w.r.t. sub-codebooks U and V to produce the two sequences of codewords ordered by the distance (denoted
r and s) from the respective query half. Then, those sequences are traversed with the multi-sequence algorithm that outputs
the pairs of codewords ordered by the distance from the query. The lists associated with those pairs are concatenated to
produce the answer to the query. Bottom – The first iterations of the multi-sequence algorithm in this example. Red denotes
pairs in the priority queue, blue indicates traversed pairs (the pair traversed at the current iteration is emphasized). Green
numbers correspond to pair indices (i and j), while black symbols give original codewords (uα(i) and vβ(j)). The numbers
in entries are the distances r(i)+s(j) = d

(
q, [uα(i) vβ(j)]

)
.

into halves seems to be a near-optimal strategy, while in
other cases one can regroup the dimensions to reduce
the correlation or multiply all vectors by a random
orthogonal matrix to balance the variances between the
halves [12], [24].

The PQ codebooks for the inverted multi-index are
obtained via independent k-means clustering of the
sets D1 and D2 independently, producing the code-
books U = {u1,u2, . . . ,uK} for the first half and V =
{v1,v2, . . . ,vK} for the second half of dimensions1. We
then perform the product quantization of the dataset
vectors, so that the K2 lists corresponding to all possible
pairs of codewords (ui,vj), i = 1 . . .K, j = 1 . . .K are
created. We denote each of the K2 lists as Wij . Each
point p = [p1 p2] is assigned to the closest point [ui vj ],
so that:

Wij = {p = [p1 p2] ∈ D | (1)
i = argmin

k
d1(p

1,uk) ∧ j = argmin
k
d2(p

2,vk)} .

Note that the “catchment area” of each list Wij is now
a Cartesian product of the two Voronoi cells in RM

2

spaces. In (1), the distance measures d1 and d2 in RM
2

are induced by d, so that ∀a,b : d(a,b) = d1(a
1,b1) +

d2(a
2,b2). The simplest and most important case is

setting d, d1, and d2 to be squared Euclidean norms in

1. We have deliberately chosen different letters u and v in the
notation of the two sub-codebooks, to emphasize that they are learned
separately and that wi 6= [ui vi].

respective spaces, so that the resulting multi-index can
be used to retrieve points with low Euclidean distance
from the query. We briefly discuss alternative distances
below.

Querying the multi-index. Given a query q =
[q1 q2] ∈ RM and a desired candidate list length T � N ,
an inverted multi-index allows to generate a list of T
(or slightly more) points from D that tend to be close
to q with respect to the distance d. This is achieved via
identifying a sufficient number of codeword pairs [ui vj ]
that are closest to q in RM and concatenating their lists
Wij . Finding those [ui vj ] is performed in two stages
(Figure 2-top).

On the first stage, q1 and q2 are independently
matched to corresponding codebooks. Thus, for q1 and
q2 the L nearest neighbors among U and V respectively
are identified (where L < K depends on the specified T ).
As the size of U and V is typically not large (thousands
of vectors), exhaustive search can be used. Denote with
α(k) the index of the kth closest neighbor to q1 in U
(i.e. uα(1) is the nearest neighbor to q1 in U , uα(2) is
the second closest, etc.). Similarly, denote with β(k), the
index of the kth closest neighbor to q2 in V . Also, denote
with r(k) and s(k) the distances from q1 and q2 to
uα(k) and vβ(K) respectively, i.e. r(k) = d1

(
q1,uα(k)

)
and s(k) = d2

(
q2,vβ(k)

)
.

On the second stage, given the two monotonically
increasing sequences r(1), r(2), . . . , r(L) and
s(1), s(2), . . . , s(L), we traverse the set of pairs
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{(r(i), s(j)) | i = 1 . . . L, j = 1 . . . L} in the order
of the increasing sum r(i) + s(j) (which equals
d(q, [uα(i) vβ(j)])). In this way, the centroids [uα(i) vβ(j)]
are visited in the order of increasing distance from q.
The traversal starts from the pair (1, 1) naturally
corresponding to the cell around the centroid
[uα(1) vβ(1)], which the query falls into. During
the traversal, the lists Wα(i) β(j) are concatenated, until
the length of the answer exceeds the predefined length
T , at which point the traversal stops.

We propose an algorithm to perform such a traversal
(Figure 2-bottom, Figure 3). This multi-sequence algo-
rithm is based around a priority queue of index pairs
(i, j), where the priority of each pair is defined as
− (r(i) + s(j)) = −d

(
q, [uα(i) vβ(j)]

)
. The queue is ini-

tialized with a single pair (1, 1). At each subsequent step
t, the pair (it, jt) with top priority (lowest distance from
q) is popped from the queue and considered traversed
(the associated list Wα(i) β(j) is added to the output list).
The pairs (it+1, jt) and (it, jt+1) are then considered for
the insertion into the priority queue. The pair (it+1, jt)
is inserted into the queue if its other preceding pair
(it + 1, jt − 1) has also been traversed (or if jt=1).
Similarly, the pair (it, jt + 1) is inserted into the queue
if its other preceding pair (it − 1, jt + 1) has also been
traversed (or if it=1). The idea is that each pair is
inserted only once when both of its preceding pairs are
traversed.

The multi-sequence algorithm produces a sequence of
pairs (i, j), whose lists Wi,j are accumulated into the
query response. One can prove the correctness of the
algorithm:

Corollary 1 (correctness): the multi-sequence algo-
rithm produces the sequence of pairs in the order of
increasing r(i)+ s(i) and will eventually visit every pair
in {1 . . . L} ⊗ {1 . . . L}.

Proof: We prove the corollary 1 in two steps. First, we
prove that the algorithm will visit all cells in the L-by-L
table (completeness – given that long enough candidate
list is requested) and then we prove that it will visit the
cells in the right order (monotonicity).

Completeness: We prove the completeness by induction
on the value of sum (i + j) for a fixed value of L. The
base of induction, i.e. the case i + j = 2 is trivial as the
cell (1, 1) is always traversed at the first step. Assume
that all cells (i, j), i+ j ≤ k will be traversed. Consider a
cell (i, j) with i+j = k+1. Both its predecessors (i−1, j)
and (i, j− 1) will be traversed by the assumption. Then,
after the traversal of the second predecessor the cell (i, j)
will be pushed into the queue and eventually popped
from the queue (given that long enough candidate list
is requested). Thus the induction step is proved and the
completeness is verified.

Monotonicity: Let us now show that for any two cells
(i1, j1), (i2, j2) such that (i2, j2) was traversed immedi-
ately after (i1, j1), the monotinicity holds, i.e. r(i1) +
s(j1) ≤ r(i2) + s(j2).

Assume the contrary, i.e. r(i1) + s(j1) > r(i2) + s(j2).

This would mean that (i2, j2) was pushed into the pri-
ority queue after (i1, j1) was traversed (otherwise the
algorithm would have popped (i2, j2) from the priority
queue first). However, after the traverse of (i1, j1) algo-
rithm can push into the queue only either (i1 + 1, j1) or
(i1, j1+1) (or both). As r(i+1) ≥ r(i) and s(i+1) ≥ s(i),
the initial assumption r(i1)+ s(j1) > r(i2)+ s(j2) cannot
hold for any of those two cases.

Regarding the efficiency of the algorithm, one can
prove that the queue within the algorithm grows slow
enough:

Corollary 2: at the tth step of the algorithm, when t
pairs have been output, the priority queue is no longer
than 0.5 +

√
2t+ 0.25.

Proof: Let us estimate the minimum number of cells
that the multi-sequence algorithm has to traverse to get
a priority queue of size q. Consider the number of cells
traversed in each row (denote them ni). It is easy to see
that a) ni is monotonically non-increasing; b) each row
has at most one cell in the priority queue (for the same
reason), c) if ni = ni+1 than the row i + 1 has no cells
in the priority queue. All three statements follows from
the fact that each cell can be added to the queue (or
traversed) only after all of its predecessors, i.e. all cells
with both coordinates smaller or equal to a given one,
have been traversed.

Therefore, to get q cells in the priority queue, there
should be at least q−1 non-empty rows with total num-
ber of traversed cells equals 1+2+ · · ·+(q−1) = q(q−1)

2 .
Therefore, q(q−1)

2 ≤ t, where t is the number of steps
(=number of traversed cells). Solving this quadratic in-
equality gives the bound.

Inverted index vs. inverted multi-index. Let us now
discuss the relative efficiency of the two indexing struc-
tures, given the same codebook size K. In this situation,
the induced subdivision of the space is very different
for the standard inverted index and for the inverted
multi-index (Figure 1). In particular, the standard index
maintains K lists that correspond to the space sub-
division into K cells, while the multi-index maintains
K2 lists corresponding to a much finer subdivision of
the space. While the lengths of the cell lists within the
inverted index tend to be somewhat balanced (due to
the nature of the k-means algorithm), the distribution
of list lengths within the multi-index is highly non-
uniform. In particular, there are lots of empty lists that
correspond to ui and vj that never co-occur together (e.g.
cells in the bottom-right corner in Figure 1-right). Still,
as will be revealed in the experiments, despite a highly
non-uniform distribution of list lengths, inverted multi-
indices enjoy a large boost in retrieval accuracy due to
higher sampling density.

Furthermore, despite the increase in the subdivision
density, matching a query with codebooks for both
structures requires the same number of operations. Thus,
in the inverted multi-index case one has to compute
the K distances between M -dimensional vectors, while
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Algorithm 3.1: MULTI-SEQUENCE ALGORITHM()

INPUT : r(:), s(:) % The two input sequences

OUTPUT : out(:) % The sequence of index pairs
% Initialization:
out← ∅
traversed (1:length(r), 1:length(s))← false
pqueue← new PriorityQueue
pqueue.push ( (1, 1) , r(1)+s(1))

% Traversal:
repeat
((i, j), d)← pqueue.pop()
traversed(i, j)← true
out← out ∪ {(i, j)}
if i < length(r) and (j=1 or traversed(i+1, j−1))

then pqueue.push ( (i+1, j) , r(i+1)+s(j))

if j < length(s) and (i=1 or traversed(i−1, j+1))

then pqueue.push ( (i, j+1) , r(i)+s(j+1))

until (enough traversed)

Fig. 3: The pseudocode for the multi-sequence algorithm.
In our implementation, the iterations are stopped when-
ever the total number of elements within the entries cor-
responding to the output pairs of indices exceeds a user-
prespecified length. Here, we give the variant of the multi-
sequence algorithm for combining two sequences. The
generalization to the “higher-order” case (e.g. merging
four sequences) is straightforward.

in the multi-index case 2K distances between M/2-
dimensional vectors are computed (while the number of
the scalar operations is the same, vector instructions on
modern CPUs can make the matching moderately faster
in the inverted index case). Querying the multi-index
also incurs an overhead in computational cost due to the
use of the multi-sequence algorithm. In our experiments,
we however observed (in Section 5) that the overhead
was small compared to the quantization cost even for
rather long list lengths T .

The use of the inverted multi-index also incurs a
memory overhead, as it has to maintain K2 rather than
K lists. However, the joint length of all lists remains the
same (as the number of entries equals the total number
of vectors i.e. N ). Therefore, given that all lists are
stored contiguously as a large array, maintaining each
list Wij effectively requires one integer (that contains
the starting location of the list within the large array).
Within our experimental setting of N = 109 and K = 214,
this overhead amounts to one byte per dataset vector
(4 bytes*K/N ). Such overhead is small compared to
several bytes of meta-data and/or compressed vector
that are typically stored for each instance.

Coming back to higher-order multi-indices, which
split vectors into more than two dimension groups,

our experiments suggest that while they result in much
smaller quantization times (for the same subdivision
densities), their memory overheads grow quite rapidly
with K and so does non-uniformity of list lengths and
the numbers of empty cells in the index. This mem-
ory inefficiency limits the usage of such “higher-order”
multi-indices to small values of K, where the accuracy of
retrieval is limited. Overall, in our experiments, second-
order multi-indices proved to be a sweet spot between
inverted indices (low memory overhead, large quantiza-
tion times for sufficient subdivision density) and higher-
order multi-indices (high memory overhead, low quan-
tization time). The use of the latter, however, might be
justified when small pre-processing times are required,
as the time required to product quantize all dataset
vectors during higher-order multi-index construction is
much smaller (due to lower K).

4 APPROXIMATE NEAREST NEIGHBOR
SEARCH WITH INVERTED MULTI-INDEX

The most important application of the inverted multi-
index is the large-scale approximate nearest neighbor
search (ANN). Indeed, as an indexing structure (e.g. a
multi-index) return short lists of vectors that are close
to a query vector, one can rerank the vectors based on
some additional information stored about each vector.
Following [12], we consider two possibilities to encode
the information about each vector.

First, we can store a PQ-compressed version of each
vector (we call this variant Multi-ADC). In the case
of Multi-ADC, the multi-index is used to return the
candidate lists of PQ-compressed points. A standard
asymmetric distance computation (ADC) is then used
to rerank the returned list by computing the distances
between the query and the returned compressed repre-
sentations.

Alternatively, we store a PQ-compressed version of
the residual displacement between the vector x and the
closest centroid [c1i c

2
j ]. This is analogous to the IVFADC

system of [12], except that the inverted index is re-
placed with the inverted multi-index. Thus, the second-
order Multi-D-ADC system is built around the coarse
codebooks C1, C2 that define the multi-index structure.
In addition, Multi-D-ADC includes the fine codebooks
R1, . . . , RM , that are used to PQ-compress the displace-
ments between the dataset points and the cell centroids.
We assume that the codebooks R1, . . . , RM

2

are used to
encode the first half the displacements dimensions, and
the codebooks RM

2 +1, . . . , RM encode the second half.
In general, for the same number of extra bytes, Multi-

D-ADC leads to higher recall than Multi-ADC, because
residual displacements have smaller magnitudes than
the original points and hence allow less lossy PQ com-
pression. On the other hand, Multi-ADC is faster than
our initial implementation of Multi-D-ADC [26], since it
allows efficient pre-computation of a single look-up table
for the ADC computation. Below, we describe a method
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that speeds up the Multi-D-ADC system considerably
without affecting the returned results.

Generally, in the case of the IFVADC system, the
reranking of PQ-compressed candidates is highly effi-
cient. In each visited cell the displacement of a query
from the cell centroid is calculated and the lookup tables
for fast ADC [12] procedure are then computed, which
permit fast distance computations between the query
displacement vector and the displacement vectors of
points stored in that cell. In the case of Multi-D-ADC,
this approach is inefficient since most of the multi-index
cells contain few points and the cost of precomputing
the ADC tables is not justified. Here (and in the report
[31]), we describe a trick that allows to overcome this
difficulty.

Consider now the case of the Multi-D-ADC and the
Euclidean distance between query q ∈ RD and a dataset
point x belonging to a cell Wij with the centroid [c1i , c

2
j ].

Let the displacement of x from the cell centroid to have
the PQ-code [r1, . . . , rM ]. With such a code x is effectively
approximated by a sum:

x ≈

(
c1i
c2j

)
+


r1
...
rM

 (2)

Then the distance from the query to the point is
approximated using (2):

‖q − x‖2 ≈

∥∥∥∥∥∥∥∥q −
(
c1i
c2j

)
−


r1
...
rM


∥∥∥∥∥∥∥∥
2

= (3)

||q||2 − 2

〈
q,

(
c1i
c2j

)〉
− 2

〈
q,


r1
...
rM


〉

+

∥∥∥∥∥∥∥∥
(
c1i
c2j

)
+


r1
...
rM


∥∥∥∥∥∥∥∥
2

As usual, we can precompute the dot-products of
the query subvectors with the codewords both from
the coarse codebooks C1, C2 and the fine codebooks
R1, . . . , RM . These displacements are stored in lookup
tables and reused in each cell during the calculation

of the terms

〈
q,

(
c1i
c2j

)〉
and

〈
q,


r1
...
rM


〉

. Given that

dot-products are precomputed, for each dataset point
the calculation of these terms can be done in O(M)
operations.

In addition, we note that the terms

∥∥∥∥∥∥∥∥
(
c1i
c2j

)
+


r1
...
rM


∥∥∥∥∥∥∥∥
2

are query-independent. They can then be precomputed
in advance and also stored within the lookup tables. Due

to the nice properties of PQ this term can be further
simplified:

∥∥∥∥∥∥∥∥
(
c1i
c2j

)
+


r1
...
rM


∥∥∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥c
1
i +


r1
...
rM

2


∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥c
2
j +


rM

2 +1

...
rM


∥∥∥∥∥∥∥∥
2

=

(4)

∥∥c1i∥∥2 + ∥∥c2j∥∥2 + M∑
k=1

‖rk‖2 + 2

M
2∑

k=1

〈c1i , rk〉+ 2

M∑
k=M

2 +1

〈c2j , rk〉

Thus, it is enough to precompute and store the
squared norms of the codewords and the dot-products
of the coarse-level and the fine-level codewords. Given
these values the calculation of the query-independent
square term can be also performed in O(M) operations.
As a result, all terms within the distance evaluation
expression (3) can be calculated in O(M) operations.

5 EXPERIMENTS

The goal of our experiments is to evaluate the inverted
multi-index structure and, in particular, its applicabil-
ity to the task of the approximate nearest neighbor
search via the Multi-D-ADC system. Our experiments
thus compare the performance of the inverted multi-
index with the standard inverted index. We also com-
pare different variants of the inverted multi-index, in-
cluding the second- and the fourth-order multi-indices,
the combination of the inverted multi-index with the
PCA compression, and in addition evaluate the recent
improvements of the Multi-D-ADC system suggested by
us and by other researchers.

Below, we group the experiments according to the
following three data processing tasks:

1) Indexing. Here, we compare different structures that
can index large datasets of vectors. The structures
are compared in their ability to return candidate
lists with high recall in a small amount of time,
when given a nearest neighbor query.

2) Fast approximate nearest neighbor search. Here we
compare the performance of joint systems that
include an indexing structure and a state-of-the-art
reranking procedure (IVFADC, Multi-D-ADC, and
the improved versions of Multi-D-ADC).

3) Detection of near-duplicate images. While the first
two groups of experiments focus on the nearest-
neighbor search w.r.t. the Euclidean metric, in the
third group we evaluate the ability to retrieve
near duplicates based on holistic GIST descriptors
(which is correlated, but not identical to Euclidean
nearest neighbor search).

Through the experiments we use the following
datasets:

BIGANN: This dataset used in the majority of our
experiments was introduced in [13] and contains 1 bil-
lion of 128-dimensional SIFT descriptors [32] extracted
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from natural images. The ground truth (true Euclidean
nearest neighbors) for a hold-out set of 10,000 queries is
provided with the dataset.

80 million Tiny Images: This dataset contains 384-
dimensional GIST [33] descriptors corresponding to 80
million Tiny Images [9]. For this set, we picked a subset of
100 vectors and computed their Euclidean nearest neigh-
bors within the rest of the dataset through exhaustive
search thus obtaining the query set (which was excluded
from the original dataset).

Augmented Copydays: The Copydays dataset was
proposed in [34] for evaluating the robustness of image
descriptors against artificial image transformations. The
dataset contains 157 original images and their “copies”
(results of JPEG, cropping and strong attacks). For each
of original images we took four most similar images
(10% and 20% crops and 75 and 50 JPEG quality factors)
and considered them as ground truth duplicates of the
original image. We calculated GIST-descriptors [33] of
these 157 × (1 + 4) = 785 images and added to them
80 million Tiny images GISTs as distractors in order to
emulate a large-scale near-duplicate search problem.

5.1 Indexing performance
In these experiments we study the quality of candidate
lists produced by the multi-index. We report different
measurements related to list lengths, timings, and the
recall, which is defined as the probability of finding the
first nearest neighbor of a query in a list returned by
a certain system. This probability is always evaluated
by averaging the rate of success (true nearest neighbor
is on the list) over the available query set. In practice,
the performance of retrieving other nearest neighbors
(beyond the first one) is often important, however, this
performance is highly correlated with the ability to re-
trieve the first nearest neighbor, and is therefore omitted
from this evaluation. All timings were obtained on a
single core of Intel Xeon 2.40 GHz CPU (using BLAS
instructions in the single-thread mode).

5.1.1 Candidate list quality
To evaluate the quality of candidate lists we compare
the recall of a second-order inverted multi-index and
an inverted index for the same codebook size K. We
perform this comparison for K = 214 for the BIGANN
and 80 million dataset and, additionally, for a smaller
K = 212 for the BIGANN dataset. For a set of predefined
list lengths T (powers of two) and for each query, we tra-
verse both data structures concatenating the lists stored
in the entries. The traversal stops one step before the
concatenated list length exceeds the predefined length
T . Figure 4 plots the recall of such lists versus the length
T (to which we refer as recall@T ). In general, for a fixed
K, the advantage of multi-indices over indices is very
significant for the whole range of list lengths. For the
SIFT1B dataset we also present a performance of an in-
verted index with significantly larger codebook K = 216.
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Fig. 5: Time (in milliseconds) required to retrieve a list
of a particular length from the inverted multi-index and
index on the BIGANN dataset.

While for such K the performance of the inverted index
improves considerably, it is still uniformly worse for all
list lengths than the performance of the inverted multi-
index for K = 212.

We then evaluate an additional baseline. As kd-
trees [11] have emerged as a popular tool for working
with very large codebooks, we took an even larger code-
book (218 codewords) and used a kd-tree (vl_feat [35]
implementation) to match the queries and the dataset
vectors to this codebook (thus replacing the exhaustive
search within the inverted index quantization with the
fast approximate search). For a fair comparison, we
limited the number of vector distance evaluations within
the kd-tree to the respective K (either 214 or 212). As
can be seen in Figure 4, the new baseline is more
competitive in the low recall area than the standard
inverted index with the same values of K. This ver-
sion, however, performs worse than the inverted index
when high recall is needed. Overall, the recall@T of
both baselines was uniformly worse than the recall@T
of the inverted multi-indices in our experiments. Both,
kd-trees and multi-indices incur some computational
overhead over inverted indices (tree search and multi-
sequence algorithm, respectively) and we now address
the question how big this overhead is for the inverted
multi-indices.

5.1.2 Retrieval speed
We give the timings for the second-order inverted multi-
indices (K = 212,K = 214) on the BIGANN dataset
as a function of the requested list length in Figure 5.
The multi-index retrieval time essentially remains flat
until the list length grows into many thousands, which
means that the computational cost of the multi-sequence
algorithm remains small compared to the quantization.
We also give the timing curves for inverted indices
with K = 212, 214. Their approximately two-fold speed
advantage over the second-order indices (for the same
K) stems most likely from the particular efficiency of
vector instructions (BLAS library) on our CPU. This
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Fig. 4: Recall as a function of the candidate list length. For the same codebook size K, we compare three systems with similar
retrieval and construction complexities: an inverted index with K codewords, an inverted index with larger codebook (218

codewords) sped up by a kd-tree search with a maximum of K comparisons, a second-order inverted multi-index with
codebooks having K codewords. For billion-scale dataset we also provide results for an inverted index with K = 216

codewords which requires more runtime for quantization. In all experiments, multi-indices returned shorter lists with
higher recall.

efficiency makes matching against codebooks faster in
the inverted index case despite the same number of
scalar operations.

Put together, Figure 4 and Figure 5 demonstrate the
advantage of the second-order inverted multi-index over
the standard inverted index. Thus, the multi-index with
K = 212 provides much higher recall and is faster to
query than the inverted index with K = 214 even when
the BLAS instructions are used. In Figure 5, we also
provide timings for the fourth-order multi-index and
small K. Here, querying for short list lengths is much
faster, however the overhead from the multi-sequence
algorithm kicks in at shorter lengths (hundreds) exhibit-
ing the main weakness of higher-order inverted multi-
indices. We perform more comparisons involving the
fourth-order multi-index below.

5.1.3 Multi-index + PCA
As discussed above, the computational bottleneck of
the inverted multi-index is the computation of distances
between the query vector and the codewords. The multi-
index allows to reduce the size of vocabularies but the
quantization still remains linear in the space dimen-
sionality M . It is therefore natural desire to combine
the multi-index with dimensionality reduction, e.g. with
principal component analysis (PCA), which is the most
popular dimensionality reduction method. Below, we
describe the experiments conducted with the BIGANN
dataset, the second-order multi-index with K = 214

and the four-fold dimensionality reduction that replaces
128-dimensional SIFTs with 32-dimensional vectors. Our
experiments with other output dimensionalities lead to
similar results.

It turned out that there are two ways to combine
PCA with the inverted multi-index, which lead to quite
different efficiency of such combination:

Naive approach. This is the most obvious strategy.

We first apply PCA to initial 128-dimensional vectors,
truncating the top 32 principal components. To balance
the variance, we multiply the resulting vectors by a
random rotation matrix, and then build the multi-index
on the resulting vectors.

PQ-aware approach. More efficient strategy performs
PCA while taking the splitting of the dimensions into
account. Thus, two independent PCA compressions are
applied to 64-dimensional halves of initial vectors. The
top 16 principal components from each half are retained.
The resulting 16 dimensional vectors are multiplied by a
random rotation matrix, and the inverted multi-index is
built on the concatenations of the pairs of the resulting
16-dimensional vectors.

The indexing performance for both strategies are pre-
sented in Figure 6 in the form of recall@T curves. As one
could expect the recall drop is smaller with the PQ-aware
strategy because process of forming compressed vectors
encourages independence between halves. In fact, the
drop in the recall for the PCA-PQ-aware strategy is quite
small, perhaps negligible for many applications, which
means that PCA compression does not affect the quality
of candidate lists returned by the second-order multi-
index.

5.2 Approximate nearest neighbor search
The goal of these experiments is to evaluate the perfor-
mance of the Multi-ADC and the Multi-D-ADC systems
(built on top of the second-order inverted multi-index).

5.2.1 Multi-ADC
In the first experiment, we evaluate the Multi-ADC
system with m = 8 extra bytes per vector (each vector is
split into 8 dimension chunks and the PQ vocabularies
of size 256 are used). Figure 7 then gives recall@T ∗

for T ∗ = 1, 10, 100, 1000, 10000 (different curves) on the
BIGANN dataset as a function of the original candidate
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Fig. 7: Recall@T ∗ (T ∗ = 1 to 10000) of the Multi-ADC
system (storing m = 8 extra bytes per vector for rerank-
ing) for the BIGANN dataset. The curves correspond to
the Multi-ADC system that reranks a candidate list of
a certain length T (x-axis) returned by the second-order
multi-index (K = 214), while the flat dashed lines corre-
sponds to the system that reranks the entire dataset. After
reranking a tiny part of the billion-size dataset, Multi-
ADC is able to match the performance of the exhaustive
search-based system.

list length T returned by the inverted multi-index. As a
baseline, we give the performance of the ADC system
of [12] that essentially reranks the entire dataset (T = 1
billion), which takes several seconds per query. Figure 7
shows that, depending on T ∗, it is sufficient to query
only few hundred to few tens of thousand (i.e. a tiny
fraction of the entire billion-size dataset) to match the
performance of a system that reranks the entire dataset.
At this point, the shortcomings of lossy compression
within ADC seem to supersede (on average) whatever
retrieval errors are made within the inverted multi-
index. Curiously, the curves for Multi-ADC actually rise
above the performance of full reranking before con-
verging to it. We believe that this effect can have the
following explanation. Because the PQ encoding is lossy,
some “nasty” vectors are considered to be closer than
the true nearest neighbor (NN) after reranking. In some

cases, as T grows, the true nearest neighbor first enters
the top T ∗ short list but then “sinks” out of it, as more
and more of such “nasty” vectors enter the list of T
candidate points.

5.2.2 Multi-D-ADC vs IVFADC

In this set of experiments, we compare the performance
(recall@T ∗ and timings) of the Multi-D-ADC system
for T ∗ = 1, 10, 100, T = 10000, 30000, 100000, and the
number of extra bytes m = 8, 16. This performance is
summarized in Table 1. For the Tiny Images dataset, we
visualize few qualitative results of retrieval with Multi-
D-ADC in Figure 8. For the BIGANN dataset, we give
the recall and timings for our own re-implementation
of the IVFADC system closely following the description
in [12], [13]. We also reproduce the performance for the
IVFADC system (state-of-the-art for m = 8 extra bytes)
and for IVFADC+R system (state-of-the-art for m = 16
extra bytes) from [13] (the timings are thus computed on
a different CPU).

Overall, it can be observed that for the same level
of compression, the use of the inverted multi-indices
gives Multi-D-ADC a substantial speed advantage over
IVFADC(+R). This is achieved because Multi-D-ADC has
to rerank much shorter candidate lists (tens of thousands
vs. hundreds of thousand) to achieve similar or better
recall values compared to IVFADC(+R). The memory
overhead of Multi-D-ADC compared to IVFADC(+R) is
about 8% (∼13GB vs. ∼12GB) for m = 8 and about 5%
(∼21GB vs. ∼20GB) for m = 16 (all numbers include 4GB
that are required to store point IDs).

Number of cells in IVFADC. As a baseline we
choose IVFADC with K = 216 coarse cells. In general,
larger codebooks would provide better short-lists (due
to finer space partition) and more precise reranking
(as the displacements encoded by the fine codebooks
within Multi-D-ADC have smaller magnitudes). But the
usage of larger codebooks in the IVFADC results in
slower query quantization. Thus, the quantization of a
128-dimensional SIFT with K = 216 takes about 3 − 4
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System Number of cells List len.T R@1 R@10 R@100 Time(ms) Memory(Gb)
BIGANN, 1 billion SIFTs, 8 bytes per vector

IVFADC [13] 213 8 million 0.112(0.088) 0.343(0.372) 0.728(0.733) 155(74) 12
IVFADC [13] 216 600000 0.124 0.414 0.772 25 12
Multi-D-ADC 214 × 214 10000 0.153 0.473 0.707 2 13
Multi-D-ADC 214 × 214 30000 0.161 0.506 0.813 4 13
Multi-D-ADC 214 × 214 100000 0.162 0.515 0.854 11 13

BIGANN, 1 billion SIFTs, 16 bytes per vector
IVFADC+R [13] 213 8 million (0.262) (0.701) (0.962) (116*) 20

IVFADC [13] 216 600000 0.311 0.750 0.923 28 20
Multi-D-ADC 214 × 214 10000 0.303 0.672 0.742 2 21
Multi-D-ADC 214 × 214 30000 0.325 0.762 0.883 5 21
Multi-D-ADC 214 × 214 100000 0.332 0.799 0.959 16 21

Tiny Images, 80 million GISTs, 8 bytes per vector
Multi-D-ADC 214 × 214 10000 0.317 0.455 0.604 3 <1
Multi-D-ADC 214 × 214 30000 0.317 0.485 0.673 4 <1
Multi-D-ADC 214 × 214 100000 0.317 0.485 0.673 11 <1

Tiny Images, 80 million GISTs, 16 bytes per vector
Multi-D-ADC 214 × 214 10000 0.317 0.544 0.653 3 <1
Multi-D-ADC 214 × 214 30000 0.326 0.574 0.733 5 <1
Multi-D-ADC 214 × 214 100000 0.327 0.584 0.852 17 <1

TABLE 1: The performance (recall for the top-1, top-10, and top-100 matches after reranking + time in milliseconds) of
the Multi-D-ADC system (based on the second-order multi-index with K=214) for different datasets, different compression
levels. We also give the performance of the IVFADC and IVFADC+R (our reimplementation for IVFADC as well as numbers
reproduced from [13] in brackets – the timings are not directly comparable in the latter case).

milliseconds in our experiments, and for the larger code-
books (K > 216) the quantization alone is slower then
the overall time spent on quantization and reranking
within Multi-D-ADC (see the typical timings in Table 1).
While one possible solution could be to use approximate
quantization, for example, via kd-trees, Figure 4 shows
that for high levels of recall exact quantization with
smaller codebooks should be preferred. For values of
recall higher than 0.9 exact quantization with K = 216

provides better short-lists than approximate quantization
with K = 218.

The second disadvantage of having very large code-
book sizes K, is the amount of time spent on building
the index. Since during the index construction, all time is
spent on quantization and there is no reranking process
involved, the time spent is almost linear in K (a sub-
linearity is introduced because of the BLAS instructions,
however in our experiments, this sublinearity is rather
small once K becomes large). Hence, building a multi-
index of a large dataset is invariably faster than building
a standard inverted index with a similar recall.

5.2.3 Second-order vs Fourth-order multi-index.
We also compare the performance of the second-order
multi-index and the fourth-order multi-index with the
same number of effective codewords. The results are
summarized in Table 2. As one can see the Multi-4-D-
ADC system (based on the fourth-order inverted multi-
index) produces short list of candidates faster than the
Multi-D-ADC system (based on the second-order in-
verted multi-index) but the recall is significantly lower.
The reason is the effective codewords in the Multi-D-
ADC and the Multi-4-D-ADC systems are produced un-
der the assumption of independent halves and quarters
of initial points respectively. Obviously the assumption

System R@1 R@10 R@100 Time(ms)
BIGANN, 1 billion SIFTs, 8 bytes per vector

Multi-D-ADC 0.153 0.473 0.707 2
Multi-4-D-ADC 0.093 0.276 0.407 1

BIGANN, 1 billion SIFTs, 16 bytes per vector
Multi-D-ADC 0.303 0.672 0.742 2

Multi-4-D-ADC 0.191 0.391 0.427 1
Tiny Images, 80 million GISTs, 8 bytes per vector

Multi-D-ADC 0.317 0.455 0.604 3
Multi-4-D-ADC 0.247 0.426 0.495 1

Tiny Images, 80 million GISTs, 16 bytes per vector
Multi-D-ADC 0.317 0.544 0.653 3

Multi-4-D-ADC 0.307 0.475 0.523 1

TABLE 2: The performance of the Multi-D-ADC and
Multi-4-D-ADC systems with the same number of ef-
fective codewords (the second-order multi-index with
K=214 and the fourth-order multi-index with K=27 are
used for indexing) for different datasets. In all experi-
ments Multi-4-D-ADC system produces shortlist of given
length (10,000) faster because of fast quantization. But
the quality of the Multi-4-D-ADC shortlist is considerably
worse than the quality of the Multi-D-ADC shortlist. This
difference translates into the drop of the recall after the
reranking is performed.

of independent quarters is stronger. As a result, the ef-
fective codewords in the Multi-4-D-ADC system describe
the structure of initial point space worse, which causes
the drop in the recall. Moreover the timing advantage of
the Multi-4-D-ADC is not large, which probably suggests
that Multi-D-ADC system would be a preferred choice
for nearest neighbor search in most cases. Below, we also
compare the second and the fourth-order multi-indices
for the near-duplicate detection

5.2.4 Multi-D-ADC + PCA
In this set of experiments we combine the Multi-D-ADC
system and PCA, while using the naive and the PQ-
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System R@1 R@10 R@100 Time(ms)
BIGANN, 1 billion SIFTs, 8 bytes per vector

Original points 0.153 0.473 0.707 2
PCA-naive 0.116 0.348 0.525 1

PCA-PQ-aware 0.116 0.387 0.645 1

TABLE 3: The performance of different strategies to com-
bine the second-order multi-index and the PCA-based
four-fold compression. The speedup is the same for both
strategies but the recall of the PQ-aware strategy is higher,
since this strategy encourages independence between sub-
vectors thus improving the perfomance of the multi-index.

Fig. 8: Retrieval examples on the Tiny Images dataset (the
images associated with GIST vectors are shown). In each
of the three row pairs, the left-most images correspond to
the query, the top row corresponds to Euclidean nearest
neighbors found by exhaustive search, the bottom row
are the top matches returned by the Multi-D-ADC system
(K = 214, m = 16 extra bytes). Empirically, for most
examples, we observed that the top matches returned by a
Multi-D-ADC are similar in terms of semantic similarity
to the exhaustive search on uncompressed vectors (top
two rows) with few exceptions (bottom row).

aware strategies (see Section 5.1.3). As before, we use
the BIGANN dataset and consider four-fold PCA di-
mensionality reduction to 32 dimensions. In Section 5.1.3
lossy PCA compression affected only indexing quality.
In this experiment, the PCA compression also affects the
reranking quality, as the additional bytes within Multi-
D-ADC encode lossy-compressed displacement vectors.
The results for both PCA strategies are presented in
Table 3. As one could expect, the speedup is the same
for both approaches. Figure 6 suggests that the PCA
compression does not affect indexing quality by much
in the PQ-aware case, which means that closest ”coarse”
cells of multi-index can be found based only on main
principal components of a query. Unfortunately, Table 3
shows a serious drop in the recall after reranking even
for the PQ-aware strategy. This suggests that minor com-
ponents truncated in the PCA compression are necessary
for the accurate ”fine reranking”.

5.2.5 Improved versions of Multi-D-ADC
Since the initial publication [26] two improvements for
the Multi-D-ADC system have been suggested. First,
Ge et al. [27] have improved the accuracy of the system
by replacing the product quantization with the opti-

mized product quantization (OPQ) [28], [29] for both
indexing and compression (i.e. both at the coarse level
and at the fine level). In a nutshell, OPQ is an extension
of PQ which finds a data-specific orthogonal transforma-
tion which makes product subspaces less correlated. For
some kinds of data a preprocessing with such a trans-
formation results in significantly higher performance.
The resulting ANN search system (OMulti-D-OADC)
improves the accuracy of Multi-D-ADC considerably.

Secondly, in Kalantidis et al. [30] and independently
in our report [31], it was suggested that in addition to
using the optimized product quantization, a separate
i.e. local second-level (fine) codebook can be learned
for each coarse-level codeword in order to encode the
displacements of vectors that belong to multi-index cells
that share this codeword. Here, we refer to this system
as OMulti-D-OADC-Local.

Table 4 demonstrates the recall levels achieved by
OMulti-D-OADC and OMulti-D-OADC-Local systems
for the billion-scale SIFT1B dataset. The OMulti-D-
OADC-Local system achieves significantly higher recall
and provides current state-of-the-art for this dataset.
While the improvement in accuracy from the use of the
local codebooks is substantial, we notice that the use
of local codebooks precludes the speed optimization we
discuss in Section 4, which results in increased runtimes.
Also, the space required for storing local codebooks
might be considerable (2 Gb in our settings). The IV-
FADC system also allows to use the OPQ at the fine
level for compression. We refer to this modification as
IVFOADC and present its performance in Table 4 for
comparison.

Importantly, the gap between IVFADC and Multi-D-
ADC remains about the same, once rotation optimization
is brought in. The use of local codebooks within OMulti-
D-OADC-Local further increases this gap (as one would
expect). It is certainly possible to use local codebooks
with IVFOADC, however the memory required to store
local codebooks would grow significantly (e.g. 8 Gb for
K = 216).

5.3 Near-duplicate detection
We also apply the inverted multi-index to the problem
of large-scale duplicate detection [36], [37], [38]. In these
experiments we used the GIST-descriptors of Copydays
[34] merged with the GIST descriptors of 80 million Tiny
Images [9] thus having a dataset with known subsets of
near duplicates. We built the second-order (K = 214) and
the fourth-order (K = 27) multi-indices on this dataset
and use descriptors of the original Copydays images as
queries to these multi-indices. The main measure of near-
duplicate detection quality we take the recall@T , which
in this case means the percentage of groundtruth near-
duplicates in the candidate lists of length T returned
by a multi-index, averaged over all queries. The results
presented on Figure 9 and Figure 10 are consistent with
the relative performance of the two indices for nearest
neighbor search (Table 2).
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System Number of cells l R@1 R@10 R@100 Time(ms) Memory(Gb)
BIGANN, 1 billion SIFTs, 8 bytes per vector

IVFOADC 216 600000 0.138 0.451 0.810 25 12
OMulti-D-OADC [27] 214 × 214 10000 0.180 0.518 0.747 2 13
OMulti-D-OADC [27] 214 × 214 30000 0.184 0.548 0.848 4 13
OMulti-D-OADC [27] 214 × 214 100000 0.186 0.559 0.892 11 13

OMulti-D-OADC-Local [30], [31] 214 × 214 10000 0.268 0.644 0.776 6 15
OMulti-D-OADC-Local [30], [31] 214 × 214 30000 0.280 0.704 0.894 16 15
OMulti-D-OADC-Local [30], [31] 214 × 214 100000 0.286 0.729 0.952 50 15

BIGANN, 1 billion SIFTs, 16 bytes per vector
IVFOADC 216 600000 0.315 0.764 0.955 28 20

OMulti-D-OADC [27] 214 × 214 10000 0.339 0.704 0.769 2 21
OMulti-D-OADC [27] 214 × 214 30000 0.360 0.792 0.901 5 21
OMulti-D-OADC [27] 214 × 214 100000 0.367 0.834 0.969 16 21

OMulti-D-OADC-Local [30], [31] 214 × 214 10000 0.421 0.755 0.782 7 23
OMulti-D-OADC-Local [30], [31] 214 × 214 30000 0.454 0.862 0.908 19 23
OMulti-D-OADC-Local [30], [31] 214 × 214 100000 0.467 0.914 0.976 66 23

TABLE 4: The results for (our implementations of) the improved versions of the Multi-D-ADC system. OMulti-D-OADC
proposed by Ge et al. [27] replaces product quantization with the optimized product quantization. OMulti-D-OADC-Local
system proposed in [30], [31] further increases the accuracy (at the cost of extra time and memory) through the use of local
codebooks in each coarse cell. The IVFOADC is a modification of the IVFADC which uses the OPQ for database points
compression.
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Fig. 9: Near-duplicate retrieval recall@T of the second-
and the fourth-order multi-indices as a function of the
candidate list length. For all reasonable lengths the
second-order multi-index produces lists with higher re-
call.

Thus, as shown in Figure 10, the fourth-order system
produces a candidate list with a given recall faster.
However, as can be seen from Figure 9 for any recall
level, candidate lists produced by the second order
multi-index is significantly shorter. Overall, as in most
systems the returned candidate lists are likely to be
reranked/verified in a certain way (e.g. by comparing
some hash values between the query image and the
indexed images), the system based on the second-order
multi-index is likely to be faster for any certain level
of desired recall (after the verification/reranking time is
factored in).
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Fig. 10: Near-duplicate retrieval recall@T of the second-
and the fourth-order multi-indices as a function of time.
Because of faster quantization the fourth-order multi-
index traverses the cells closest to queries and attains
moderate recall values faster. For high recall values the
second-order multi-index is preferable: it gains high recall
faster because its traversal procedure better concentrates
on the parts of space around the query (cf. Figure 9).

6 DISCUSSION

We have introduced the inverted multi-index, which is
a generalization of a standard inverted index for the
large-scale retrieval in the datasets of high-dimensional
vectors. In our evaluation, second-order multi-indices
significantly outperformed standard inverted indices in
terms of the accuracy of the returned candidate lists
given the same runtime budget. This advantage over the
inverted indices, also translates to the complete systems
for approximate nearest neighbor search that combine
candidate list generation with reranking. Here, the fact
that the inverted multi-index can generate much shorter
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candidate lists to achieve the same level of recall, allows
to query billion-scale datasets in a few seconds.

We have also compared the second-order and the
fourth-order inverted multi-indices for the tasks of near-
est neighbor search and duplicate detection and found
out that the second order multi-index would be a better
choice in most situations. Since the standard inverted
index can be regarded as a first-order inverted multi-
index, we believe that the second order might be a
sweet spot. One important consideration that however
may force to prefer the fourth-order multi-index over the
second-order multi-index is the index construction time
(which for simplicity was omitted from our experimen-
tal evaluation). Indeed, the multi-index construction is
likely to have a time bottleneck at the quantization stage
(assuming that the extra information such as PQ com-
pression is fast to compute). As the quantization time
would be dramatically (at least an order of magnitude)
smaller for the fourth-order multi-index, it can be pre-
ferred whenever index construction time is important.

We have also looked into the combination of the
inverted multi-index and the PCA dimensionality reduc-
tion, which allows to speedup search without significant
drop in the recall of the returned candidate lists, as long
as PCA is applied in a smart way that takes into account
the split into dimension group.

Similarly to other works that rely on the product quan-
tization, the efficiency of the inverted multi-index in-
creases as the correlation between the dimension groups
that the vectors are split into decreases. As shown
above, the correlation between the halves of the SIFT
or GIST vectors is low enough for the inverted multi-
index to perform well. Generally, the input vectors can
be transformed by the transform that decreases the
correlation between the parts of the vector. Finding
such transformation was the subject of the recent work
of Ge et al. [28], and their experiments suggest that
the performance of the inverted multi-indices can be
improved as a result of such transformation. Thus, they
were able to improve our results on the BIGANN dataset
through the use of such transformation (while leaving
the use of the multi-index unchanged otherwise). Here,
we evaluate the suggested improvement along with the
idea of local codebooks [30], [31] and confirm that they
can substantially improve the accuracy of the Multi-D-
ADC system built on top of the inverted multi-index.

Apart from their use within the nearest neighbor
search or duplicate detection systems, multi-indices can
be also used within retrieval systems that combine the
candidate lists returned for multiple descriptors ex-
tracted from the same query image [1]. There, replacing
candidate lists corresponding to a single codeword with
something closer to nearest neighbor search has been
shown to improve the accuracy significantly albeit at
a considerable computational cost (c.f. [39], [40]). Fur-
thermore, it is straightforward to replace the (square of
the) Euclidean distance within the multi-index with any
other additive distance measure or kernel; it will thus

be interesting to evaluate inverted multi-indices within
large-scale machine learning systems, in particular those
utilizing exemplar SVMs [41].
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